EHT Imaging Tutorial

Andrew Chael & Katie Bouman

Imaging with the Event Horizon Telescope

Measurements

Infinite Number of Possibilities

Imaging Methods

SQUEEZE, BSMEM, MEMHorizon, Sparse Imaging, CHIRP, Closure only

SQUEEZE – Fabien Baron Sparse Imaging Grou

a fabienbaron / squeeze				Watch ▼	2 ★ St	ar 1 💡 Fork 0
<> Code () Issues 0	n Pull requests 0	rojects 0 🗉 Wiki	- Pulse	II Graphs		
mage reconstruction and inf	erence tool for optical ir	terferometry				
134 commits	₽ 2 branches	\bigcirc 0 releases	41 1 c	ontributor	_	ಶ್ತೆ GPL-3.0
Branch: master - New pull requ	lest		Create new file	Upload files	Find file	Clone or download -
Fabien Baron Fix non-critical f	ïle handle leak				Latest co	ommit 261c01f on Jun 7
GDL	VEGA diff vis					6 months ago
JULIA	Added output of final	parameters				2 years ago
PYTHON	Initial commit for SQU	JEEZE 2				2 years ago
🖬 bin	Initial commit for SQU	JEEZE 2				2 years ago
in build	Implementing cmake	installation				2 years ago
🖬 lib	Some tweaks to burn	in times for final images				6 months ago
sample_data	temporaryfits keywor	d changed to monitor				a year ago
src	Fix non-critical file ha	indle leak				6 months ago
.gitmodules	Initial oifitslib branch	not working				7 months ago
CMakeLists.txt	Initial chi2 values					10 months ago
	Initial commit for SQL	JEEZE 2				2 years ago

Ent-imaging Python Library

📮 achael /	eht-imaging					⊙ Unwatch →	7	★ Star	3	% Fork	1
<> Code	() Issues 0	ן Pull requests 1	Projects 0	💷 Wiki	🧄 Pulse	III Graphs					
Observing and Imaging software for the Event Horizon Telescope											

(7) 108 commits	P 2 branches 0 releases		11 3	contributors		
Branch: master - New pull request		Create new file	Upload files	Find file	Clone or download -	
achael changed pesky windows li	nebreaks		L	atest comm	it 5279fbc 11 hours ago	
🖿 arrays	Self-Calibration modifications				2 months ago	
🖿 data	adata Add vlbi_imaging_util2_v2.py and maxen_v2.py. Update array text files. 8 months					
docs	"Update maxen.py with correct constraint te	"Update maxen.py with correct constraint terms" 10 months a				
models	Delete roman_eofn.fits	Delete roman_eofn.fits 6 mont				
README.md	added chirp to readme				4 months ago	
Scattering_Examples.py	A few examples of how to use the scattering	library. Also show	vs examp		15 days ago	
■initpy	allow as module				2 months ago	
example.py	changed pesky windows linebreaks				11 hours ago	
example_chirp.py	made example.py compatable with the new	made example.py compatable with the new maxen_bs function. changed th 4			4 months ago	
example_closure_only.py	Added Closure Only Imaging	Added Closure Only Imaging 5 r			5 months ago	
example_movie.py	Added observation copy function				2 months ago	

MEMHorizon

Sparse Imaging Ideas

• CHIRP

- Closure-only Imaging
- Time-Variable Imaging
- Scattering Mitigation

Generate Data

Plot Data/Results

Ent-imaging Python Library

Observing and Imagine software EA	SILY SWAP IN AN	ID OUT IDEAS &
MERC	GE THE BEST OF	ALL ALGORITHMS
and w	It is a bit rough arc e need MUCH better docu	und the edges mentation than we have now

Step 0: Installing Python 2.7 and Necessary Dependencies

Step 1: Exploring the VLBI Imaging Website

VLBI Imaging Websitenaging.csail.mit.edu

Welcome to the VLBI Reconstruction Dataset!

The goal of this website is to provide a testbed for developing new VLBI reconstruction algorithms. By supplying a large set of easy to understand training and testing data, we hope to make the problem more accessible to those less familiar with the VLBI field. Specifically, this website contains a:

- Large set of synthetic training data for many different VLBI arrays and targets
- Set of real data measurements provided in the same standard format
- <u>Standardized data set</u> for testing VLBI Image Reconstruction Algorithms
- Online quantitative evaluation of algorithm performance on simulated testing data
- Qualitative comparison of algorithm performance on the reconstruction of real data
- Online form to easily simulate realistic data using your own image and telescope parameters

VLBI Imaging Websitimaging.csail.mit.edu

Standardized dataset of real & synthetic Over 5000 syntheticate 14 Array Configurations, 96 Source Images, 4 Noise Levels

VLBI Imaging Websitienaging.csail.mit.edu

Automatic Quantitative and Qualitative Evaluation

VLBI Imaging Websitenaging.csail.mit.edu

Online form to easily simulate realistic data using user-specified parameters

Step 1: Generating Data on the VLBI Imaging Website

Selecting/Uploading an Image Sorry about this! We will fix the Step 1: Select Image of the Emission inconsistency Select or upload an image that you would like to observe and specify the total flux density of the emission. very soon Rotation (Degrees): **Total Flux Density** (Janskys): 2.5 180 **CLICK TO UPLOAD YOUR OWN GRAYSCALE PNG/JPEG IMAGE** (under 512 x 512 pixels) Sgr A* Model Add Image To Dataset Natural User Uploaded Celestial When using these images cite (Broderick et al., July 2011) Spin: 0% \$ Choose Another **Choose Another Choose Another** Inclination: 89° \$ Image Image Image

Selecting Target Location and Field of View

Step 2: Select Direction and FOV

Identify the direction to the target source. Right ascension should be in the form HH:MM:SS.SS for hours, minutes, and seconds and declination should be in the form DD:MM:SS.SS for degrees, arcminutes, and arcseconds. Field of view is specified in arcseconds. Warning: You must choose coordinates such that your region will be observable from your observatory site (the first telescope you specify below) at the start time that you specify, otherwise the resulting output will be incorrect.

Selecting Telescopes

Step 3: Specify Telescope Array

Add the telescope locations and intrinsic parameters that you would like to use to simulate data

Initilization: Select a pre-loaded telescope

Name: Unique name for each telescope station (up to 12 characters)

East Longitude/Latitude: East longitude and latitude of the array center. For locations less than 180 degrees west of Greenwich a minus sign should precede the longitude entry.

X/Y/Z Position: Absolute X, Y, Z coordinates of each station (in meters) relative to the center of the Earth

Lower/Upper Elevation: Lower and upper elevation limits of the of the antenna in degrees

SEFD: System equivalent flux denisty of the antenna

Diameter: Antenna diameter in meters

Initi	lization	Name	East Longitude	Latitude	X-Position	Y-Position	Z-Position
	MA 🗘	ALMA	-67:45:11.4	-23:01:09.4	2225037.1851	-5441199.162	-2479303.4629
SM	IT 🛊	SMT	-109:52:19	32:42:06	-1828796.2	-5054406.8	3427865.2
	T	LMT	-97:18:53	18:59:06	-768713.9637	-5988541.7982	2063275.9472
SM	IA 🗘	SMA	-155:28:40.7	19:49:27.4	-5464523.4	-2493147.08	2150611.75
PV	•	PV	-3:23:33.8	37:03:58.2	5088967.9	-301681.6	3825015.8
PD	B ♦	PDB	05:54:28.5	44:38:02.0	4523998.4	468045.24	4460309.76
SP'	T 🔷	SPT	-000:00:00.0	-90:00:00	0	0	-6359587.3

ADD TELESCOPE DELETE SELECTED

Data Collection Settings

Step 4: Specify Date and Time Data is Collected

Specify the time of when you would like measurments to be taken, and the time interval between measurements.

Start Time: Specify the time of your first observation in Universal Time (UT). The required format is "YYYY:ddd:hh:mm:ss" where YYYY is the year, ddd is the day number (e.g., December 31 is day 365); hh is the UT hour, mm is the UT minute, and ss is the UT second.
Scan Duration: The length of a continuous scan in seconds
Interval Length: The time in seconds between successive scans
Number of Samples: The number of successive scans of this type

Start Time (UT)	Scan Duration (seconds	s)	Interval Length (seconds	5)	Number of Samples	
2017:95:00:00: 00	12		600		100	

ADD DATA COLLECTION	DELETE SELECTED
---------------------	-----------------

Data Collection Settings

Step 5: Specify Collection Parameters

Specify the center frequency and width of the observing channel in MHz.

Center Frequency (MHz): 227297 Bandwidth (MHz): 4096

Specify your integration time in seconds (sometimes referred to as "dump time" or "record length"). This is not the total duration of your observation, but rather the sampling and recording interval of the data.

Integration Time (seconds):

60

What Kinds of Noise Can We Add?

Selecting Types of Noise Added

Let's JUST add Thermal Noise

Step 6: Add Noise and Generate Data

Simulate Without ANY Noise

Simulate Without Atmospheric Phase Errors

✓ Simulate Without 5 % Gain Error

And now we generally generate our data....

But if so many people submit at the same time we will probably bog down the machine....

So for now, please download precomputed data and later you can generate it yourself

vlbiimaging.csail.mit.edu/myDataResults_6312

Click Here to Download Data

Click Here to View the Telescope and Target Source Parameters

What does the downloaded zip file provide?

Information to Reproduce Data

Data in a number of formats

Plots to help you understand the dat

Original Images in FITS and PNG

What are these data formats?

What are the data formats and how do I use them?

We use OIFITS, MAT, and ASCII data formats. We describe OIFITS and MAT below in detail.

OIFITS

The primary data format that we have chosen to use is OIFITS. OIFITS is a standard for exchanging data for Optical (Visible/IR) Interferometry, and is based on the FITS Standard. Since mm/sub-mm VLBI shares a lot of similarities to optical interferometry, this format is better suited for mm/sub-mm measurements than UVFITS. More information on the OIFITS format can be found here. We list the variables described in this paper in the tables below.

We provide a number of tools that may be useful in reading and writting in the OIFITS format:

- Paul Boley has written a OIFITS Python module that you can download here
- Python code that can be used to write an OIFITS file from an output MAPS text file can be downloaded here
- Python code by Andrew Chael to extract information from OIFITS and write it to a text file can be downloaded here

OI_T3 Variables	Description	Units
ТЗАМР	Triple-product/Bispectrum amplitude	Jansky ³
ТЗРНІ	Triple-product phase	Degrees
T3AMPERR	Standard deviation of error in triple product amplitude	Jansky ³
T3PHIERR	Standard deviation of error in phase	Degrees
U1COORD	u coordinate of baseline AB of the triangle	meters
U2COORD	u coordinate of baseline BC of the triangle	meters
V1COORD	v coordinate of baseline AB of the triangle	meters
V2COORD	v coordinate of baseline BC of the triangle	meters
STA_INDEX	Station numbers contributing to the data	
INT_TIME	Integration time	seconds
MJD	Modified Julian Date	

Step 3: Loading and Inspecting Data

In an ipython window:

import numpy as np

import ehtim as eh

Load the observation file we generated

obs = eh.obsdata.load_uvfits('./data/sgraimage.uvfits')

Can also load custom text format, oifits, and MAPS output

Look at plots! UV coverage obs.plotall('u','v', conj=True) Shows both u,v and -u,-V 1e10 1.0 0.5 > 0.0 ***** -0.5**** ********* -1.0-6-4-2 0 2 4 6 le9 u

Look at plots: Baseline phase over time obs.plot_bl('SMA', 'ALMA', 'phase')

Look at plots: Closure phase over time

obs.plot_cphase('LMT', 'SPT', 'ALMA')

Take a look at the dirty beam and clean beam mage Parameters npix = 128 fov = 200*vb.RADPERUAS

Dirty Beam

dbeam = obs.dirtybeam(npix, fov)
dbeam.display()

Clean Beam

cbeam = obs.cleanbeam(npix,fov)
cbeam.display()

0.0024

component

Relative RA (μ as)

Take a look at the dirty image

dim = obs.dirtyimage(npix, fov)
dim.display()

What is the array resolution?

Step 4: Produce an Image

Generate a prior image

Image Parameters

npix = 128fov = 200*vb.RADPERUAS

Gaussian Prior

```
emptyprior = eh.image.make_square(obs, npix, fov)
gaussprior = emptyprior.add_gauss(zbl, gaussparams)
gaussprior.display()
```

Use MEM with complex visibilities

Initial Image Prior Image Total flux constraint

Relative RA (μ as)

Final images – save to

Final "restored" image
outblur = out.blur_gauss(beamparams, 0.5)

Display results

out.display()
outblur.display()

Save to FITS

imageout.save_fits('./sgraim.fits')
outblur.save_fits('./sgraim_blur.fits')

Look at fit to data - Amplitudes

eh.plotting.comp_plots.plotall obs im compare(obs, out, "uvdist", "amp")

Look at fit to data - Phases

eh.plotting.comp_plots.plotall_obs_im_compare(obs, out, "uvdist", "phase")

Step 5: Generating Data with Atmospheric Noise

Selecting/Uploading an Image

Step 1: Select Image of the Emission

Select or upload an image that you would like to observe and specify the total flux density of the emission.

Selecting Target Location and Field of View

Step 2: Select Direction and FOV

Identify the direction to the target source. Right ascension should be in the form HH:MM:SS.SS for hours, minutes, and seconds and declination should be in the form DD:MM:SS.SS for degrees, arcminutes, and arcseconds. Field of view is specified in arcseconds. Warning: You must choose coordinates such that your region will be observable from your observatory site (the first telescope you specify below) at the start time that you specify, otherwise the resulting output will be incorrect.

Field Of View Center: R	ight Ascension (HH:MM:SS.SS)	12:30:49.42338 2	Declination(DD:MM:SS.SS)	12:23:28.04366
Field Of View Size:	Right Ascension (arcseconds)	0.00016	Declination (arcseconds)	0.00016

Selecting Telescopes

Step 3: Specify Telescope Array

Add the telescope locations and intrinsic parameters that you would like to use to simulate data

Initilization: Select a pre-loaded telescope

Name: Unique name for each telescope station (up to 12 characters)

East Longitude/Latitude: East longitude and latitude of the array center. For locations less than 180 degrees west of Greenwich a minus sign should precede the longitude entry.

X/Y/Z Position: Absolute X, Y, Z coordinates of each station (in meters) relative to the center of the Earth

Lower/Upper Elevation: Lower and upper elevation limits of the of the antenna in degrees

SEFD: System equivalent flux denisty of the antenna

Diameter: Antenna diameter in meters

Initi	lization	Name	East Longitude	Latitude	X-Position	Y-Position	Z-Position
	MA 🗘	ALMA	-67:45:11.4	-23:01:09.4	2225037.1851	-5441199.162	-2479303.4629
SM	IT 🛊	SMT	-109:52:19	32:42:06	-1828796.2	-5054406.8	3427865.2
	T	LMT	-97:18:53	18:59:06	-768713.9637	-5988541.7982	2063275.9472
SM	IA 🗘	SMA	-155:28:40.7	19:49:27.4	-5464523.4	-2493147.08	2150611.75
PV	•	PV	-3:23:33.8	37:03:58.2	5088967.9	-301681.6	3825015.8
PD	B ♦	PDB	05:54:28.5	44:38:02.0	4523998.4	468045.24	4460309.76
SP'	T 🔷	SPT	-000:00:00.0	-90:00:00	0	0	-6359587.3

ADD TELESCOPE DELETE SELECTED

Data Collection Settings

Step 4: Specify Date and Time Data is Collected

Specify the time of when you would like measurments to be taken, and the time interval between measurements.

Start Time: Specify the time of your first observation in Universal Time (UT). The required format is "YYYY:ddd:hh:mm:ss" where YYYY is the year, ddd is the day number (e.g., December 31 is day 365); hh is the UT hour, mm is the UT minute, and ss is the UT second.
Scan Duration: The length of a continuous scan in seconds
Interval Length: The time in seconds between successive scans
Number of Samples: The number of successive scans of this type

Start Time (UT)	Scan Duration (seconds	s)	Interval Length (seconds	5)	Number of Samples	
2017:95:00:00: 00	12		600		100	

ADD DATA COLLECTION	DELETE SELECTED
---------------------	-----------------

Data Collection Settings

Step 5: Specify Collection Parameters

Specify the center frequency and width of the observing channel in MHz.

Center Frequency (MHz): 227297 Bandwidth (MHz): 4096

Specify your integration time in seconds (sometimes referred to as "dump time" or "record length"). This is not the total duration of your observation, but rather the sampling and recording interval of the data.

Integration Time (seconds):

60

Selecting Types of Noise Added

Let's add Thermal & Atmospheric Noise

Step 6: Add Noise and Generate Data

Simulate Without ANY Noise

Simulate Without Atmospheric Phase Errors

✓ Simulate Without 5

% Gain Error

vlbiimaging.csail.mit.edu/myDataResults_3593

Click Here to Download Data

Click Here to View the Telescope and Target Source Parameters

Step 7: Image with Closure Phase

Look at the phase errors

Load the data

obs = eh.obsdata.load_uvfits('./data/m87image.uvfits

image!

Self-Cal)

Baseline Phases

obs.plotall('uvdist', 'phase')

Dirty Image

npix = 128fov = 150*vb.RADPERUASdim = obs.dirtyimage(npix, fov) dim.display()

Closure Phase is preserved

obs.plot_cphase('SMA', 'SMT', 'ALMA')

Array resolution and prior image

Array Resolution

beamparams = obs.fit_beam()
res = obs.res()

Prior Parameters

Create the Gaussian Prior

emptyprior = eh.image.make_square(obs, npix, fov)
gaussprior = emptyprior.add_gauss(zbl, gaussparams)

Image with amplitude and closure phase

out = eh.imager_func(obs, gaussprior, gaussprior, zbl,d1="amp",d2="cphase", alpha_d1=100, alpha_d2=50, s1="gs", maxit=100)

From experience, closure phase fits faster so we decrease its weight

Blur and re-image

outblur = out.blur_gauss(beamparams, 0.5)

out=outblur

```
out = eh.imager_func.maxen_amp_cphase(obs, out, out, zbl, d1="amp",
d2="cphase", alpha_d1=50, alpha_d2=25, maxit=150, s1="tv")
```


Final images

Final "restored" image
outblur = out.blur_gauss(beamparams, 0.5)

Display results

out.display()
outblur.display()

Save to FITS

imageout.save_fits('./M87im.fits')
outblur.save_fits('./M87im_blur.fits')

Look at fit to data - Amplitudes

eh.plotting.comp_plots.plotall_obs_im_compare(obs, out, "uvdist", "amp")

Look at fit to data – Closure Phase

eh.plottling.comp_plots.plot_cphase_obs_im_compare(obs, out, "ALMA", "SMA", "LMT")

Step 7: Participate in the Imaging Challenge!

New challenge out now! Deadline: December 9th, 2016

vipimaging.csail.mit.edu/imagingchallenge

- Blind data that you download (in uvfits, oifits, and text files)
- Sample data with truth images to help verify your algorithms are working
- Code to help you get started

Testing Data and Submission Instructions

l. Download the test data from <u>HERE</u> .					
 Use your algorithm to generate an image for each of the data files. For each < filename >.txt file, submit a FITS image with the name < filename >.fits and the FOV specified in the README File. Further instructions can be found in the README file. 					
3. Submit your reconstructed images. Compress all of your reconstructed FITS images into a ZIP file. Submit this ZIP file with the required additional information.					
Method Name: Email: Images: Choose File No file chosen					
Additional Information (such as website/code links):					
SUBMIT					

Data Parameters and Noise Properties

Challenge Number	Source Location	Telescopes	Total Flux (Janskys)	Noise Property
1	3C279	SMA, JCMT, SMT, LMT, ALMA, APEX, PV, PDB, SPT	3	Thermal & Atmospheric
2	M87	SMA, JCMT, SMT, LMT, ALMA, APEX, PV, PDB, SPT	2	Thermal & Atmospheric
3	Sgr A*	SMA, JCMT, SMT, LMT, ALMA, APEX, PV, PDB, SPT	2	Thermal & Atmospheric & Systematic

Advanced Topics

Other types of imaging implemented in eht-imaging

- CHIRP
- Closure-only (Closure Amplitudes + Closure Phases)
- Stochastic Optics (Scattering Mitigation)
- Polarimetric (using phase-robust ratios)
- Dynamic Imaging (Movie Reconstruction)
- Add your own!