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Abstract

Supermassive black holes exist in the centers of nearly all galaxies. They are most frequently

surrounded by hot, thick, and low-radiative-efficiency accretion flows, including in the Galactic

Center radio source Sagittarius A* (Sgr A*) and at the base of the relativistic jet in the giant

galaxy M87. In this thesis, I study these objects in two ways: with numerical simulations and with

image reconstruction of data from the Event Horizon Telescope (EHT), a mm-wavelength Very Long

Baseline Interferometry (VLBI) array. In the first part, I simulate both Sgr A* and M87 using two-

temperature, radiative, general relativistic magnetohydrodynamics (GRMHD). Including radiation

and thermodynamics in GRMHD simulations is necessary to predict the electron temperatures and

emission from these objects, as electrons and ions in hot flows are far from mutual equilibrium. I

also develop a method for moving beyond thermal equilibrium in simulations by evolving a full

population of nonthermal electrons. In the second part, I describe a framework for imaging VLBI

data with regularized maximum likelihood methods, and I detail its implementation in the eht-

imaging software library. This framework allows VLBI data to be imaged with no a priori calibration,

using only robust closure quantities. Finally, I present images from the first full EHT campaign on

M87 reconstructed using eht-imaging and other methods. I conclude by describing measurements

of the black hole shadow and mass from these first images of a supermassive black hole.
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“Jamais je ne restais plus d’une journée à Tipasa. Il vient toujours un moment où l’on a trop vu
un paysage, de même qu’il faut longtemps avant qu’on l’ait assez vu. Les montagnes, le ciel, la

mer sont comme des visages dont on découvre l’aridité ou la splendeur, à force de regarder au lieu
de voir. Mais tout visage, pour être éloquent, doit subir un certain renouvellement. Et l’on se

plaint d’être trop rapidement lassé quand il faudrait admirer que le monde nous paraisse nouveau
pour avoir été seulement oublié.”

–Albert Camus, Noces à Tipasa

“She wept in pain, because she was free. What she had begun to learn was the weight of liberty.
Freedom is a heavy load, a great and strange burden for the spirit to undertake. It is not easy. It
is not a gift given, but a choice made, and the choice may be a hard one. The road goes upward

toward the light; but the laden traveller may never reach the end of it.”

–Ursula K. Le Guin, The Tombs of Atuan

“Black holes collect problems faster than they collect matter.”

–Carl Sagan, Contact
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Introduction
Supermassive Black Holes:

Light and Shadow

In my first year of graduate school, I read Ursula K. Le Guin’s The Left Hand of Darkness for

the first time. Arguably her most consequential work, the 1969 novel draws its title from a poem

shared between two characters near death on the icy tundra of a planet called Winter:

Light is the left hand of darkness
and darkness the right hand of light.

This ancient idea, the dualism of darkness and light, life and death, the clear and the obscure,

fascinated Le Guin throughout her life and work. Le Guin’s voice became my constant companion

as I read my way through her novels and short stories amidst the ups and downs, stress and exhil-

aration, darkness and light of six long years of graduate school. Through it all, I have increasingly

drawn a connection between this idea and the subjects of my research. After all, no object has

much more to do with the interplay of light and darkness than a black hole.

0.1 Black holes

In the midst of the darkness of World War I, Schwarzschild (1916) derived the first (non-trivial)

exact solution of Einstein’s field equations of general relativity (GR: Einstein, 1916). Schwarzchild’s
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solution describes the spacetime around a spherically symmetric point mass M . The line element

of a particle traversing this spacetime in spherical polar coordinates (t, r, θ, ϕ) is

ds2 = −
(
1− 2 GM

c2r

)
c2dt2 +

(
1− 2 GM

c2r

)−1

dr2 + r2dθ2 + r2 sin2 θ dϕ2, (0.1)

where G is Newton’s constant and c is the speed of light. The Schwarzchild metric has a character-

istic length-scale, or gravitational radius, rg = GM/c2.

Equation 0.1 diverges at two radii: at r = 0 and at the Schwarzschild radius r = rS = 2rg.

While the singularity at the origin is a true point of infinite curvature, in 1933 Lemaître showed

that the apparent singularity at r = rS is a coordinate artifact. An observer traversing this radius

would experience nothing abnormal. Yet to an observer at infinity, an object falling toward rS

would appear to take an infinite time, and the signals they emit would infinitely redshift to perfect

darkness. Finkelstein (1958) called this surface at rS an event horizon, a “perfect unidirectional

membrane,” or a one-way causal boundary from which even light cannot escape. Later in the

century, more and more solutions to the GR field equations with similar event horizons began to

emerge – most notably the Kerr (1963) solution describing a point mass M with nonzero angular

momentum J . Now, modern relativists take this dark, one-way surface as the defining feature of

all black holes.

Einstein himself thought that true black holes could never form in the universe, and that the

Schwarzchild metric would only be a valid solution outside the surface of objects with finite radius

r > rS. However, the black hole solutions were eventually seen to be almost inevitable. Op-

penheimer & Volkoff (1939) predicted that neutron stars above a certain mass should inevitably

collapse into black holes. Later, Penrose (1965) and Hawking & Penrose (1970) showed that generic

initial conditions in GR produce singularities, seemingly always shadowed by a black hole event
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horizon. But while the classical picture of a black hole may be as an object defined by a dark event

horizon,1 the physical reality of these objects was first realized in astronomical sources that emit

tremendous amounts of light.

Schmidt (1963) identified the optical counterpart to the radio quasar 3C273, and showed that

its emission originated at a cosmological redshift z = 0.158. At this cosmological distance, its

bolometric luminosity was computed to be ∼1045 erg s−1, orders of magnitude higher than the

total stellar luminosity of a galaxy like the Milky Way. The extreme luminosities of quasars and

other Active Galactic Nuclei (AGN) are generated by liberating a large fraction of the gravitational

potential energy of material falling onto a central compact object with a mass in the range 106 M⊙ ≲

M ≲ 1010 M⊙: a supermassive black hole (SMBH: Salpeter, 1964; Lynden-Bell, 1969; Rees, 1984).

Supermassive black holes are now thought to exist at the center of nearly every galaxy, and to play

a key role in the evolution of galaxies themselves (King, 2003; Kormendy & Ho, 2013; King &

Pounds, 2015).

Evidently, black holes are common in the universe. Aside from the SMBH that live at the hearts

of most galaxies, observations of bright X-ray emission from binaries like Cygnus X-1 (Webster &

Murdin, 1972) suggest that each galaxy may host tens to hundreds of millions of stellar mass black

holes with masses M ≲ 100M⊙ (Remillard & McClintock, 2006). Until 2015, all black holes were

identified by the electromagnetic radiation from their accreting material, but the LIGO Scientific

Collaboration, et al. (2016) detection of gravitational waves from two merging stellar mass black

holes has opened up a new window on these objects, using “dark” ripples in spacetime itself. The

latest results from LIGO (LIGO Scientific Collaboration, et al., 2018) indicate that stellar mass

black holes merge frequently in the universe, with an event rate ∼100,000 yr−1.
1When quantum effects are added to GR, even this dark surface starts to emit a very faint light (Hawking,

1974).
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0.2 Sgr A∗, low-luminosity AGN, and hot accreধon flows

Closer to home than the distant quasars or merging stellar-mass black holes observed by LIGO,

the Galactic Center radio source Sagittarius A* (Sgr A∗: Balick & Brown, 1974) is now known

to host a relatively small SMBH of mass M = (4.1 ± 0.03) × 106M⊙ (GRAVITY Collaboration

et al., 2018a). In contrast to the bright quasars, Sgr A∗ has a low luminosity ∼1035 erg s−1, or

∼100L⊙. As a result, Sgr A∗ is classified as an (extremely) Low-Luminosity AGN (LLAGN). Most

SMBH in galaxies throughout the local universe are in a similar low-luminosity state (Greene &

Ho, 2007; Ho, 2008). While wafer-thin accretion disks power quasars and bright AGN (Shakura

& Sunyaev, 1973; Novikov & Thorne, 1973), LLAGN are fed by Advection-Dominated Accretion

Flows (ADAFs: Ichimaru 1977; Rees et al. 1982; Narayan & Yi 1994, 1995a,b; Abramowicz et al.

1995; Blandford & Begelman 1999). In these systems (also called Radiatively Inefficient Accretion

Flows, or RIAFs), most of the gravitational potential energy liberated by the infall of gas is lost by

advection across the black hole event horizon instead of being released in light, leaving the accretion

flow relatively dark.

Accretion systems are described primarily by their accretion rate Ṁ . Accounting for the large

range in the masses of the central objects, Ṁ is usually expressed in dimensionless form as a fraction

of the Eddington accretion rate ṀEdd. An object accreting at the Eddington rate, with infalling

matter emitting with an efficiency η (usually η ≈ 0.1), will shine at the Eddington luminosity where

the radiation pressure on ions is in equilibrium with gravity:
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LEdd =
4πGMcmp

σT
= 1.3× 1047

(
M

109M⊙

)
erg s−1, (0.2)

ṀEdd =
LEdd
ηc2

=
2.2

η

(
M

109M⊙

)
M⊙ yr−1, (0.3)

where mp is the proton mass and σT is the Thomson scattering cross-section. Thin disks in AGN

usually have an accretion rate only a little below Eddington, 10−3ṀEdd ≲ Ṁ ≲ ṀEdd, while ADAFs

have Ṁ ≲ 10−3ṀEdd. Notably, Sgr A∗ has a measured accretion rate of Ṁ ∼ 10−7 ṀEdd (Agol,

2000; Bower et al., 2003; Marrone et al., 2007).

The three key properties of low-accretion rate ADAF models are that they are (1) hot, (2) diffuse

and geometrically thick, and (3) optically thin (see Yuan & Narayan 2014 for a review). In ADAF

models, the ion temperature of infalling plasma at radius r is only slightly less than the virial

temperature:

Ti ∼
mp c2

3kB

r

rg
∼ 1012

r

rg
K, (0.4)

where kB is Boltzmann’s constant. As a result of these high temperatures, pressure support makes

the gas in the disk “puff up” to the point where the height-to-radius ratio h/r ∼ 0.5. Consequently,

the plasma density becomes quite low (n ≲ 106 cm−3 in Sgr A∗; Genzel et al. 2010). As a result

of these low densities, the optical depth τ ≪ 1, so radiation never equilibrates into a blackbody

spectrum as it does locally in thin disks. Instead, the spectra from ADAFs are dominated by

individual radiative processes, most notably synchrotron emission. The magnetic fields that source

the observed synchrotron radiation are also critical in enabling accretion in the first place. Ordinary

molecular viscosity in these diffuse, nearly-collisionless systems is too weak to transport angular

momentum out of the accreting plasma. Instead, turbulence generated by the magnetorotational

instability (MRI: Balbus & Hawley, 1998; de Villiers et al., 2003; Narayan et al., 2012), is thought
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to act as an effective viscosity and enable accretion.

Semi-analytic ADAF models emitting via thermal (or nonthermal) synchrotron radiation can

describe the bulk of the dim emission from Sgr A∗ in the ‘submm bump’ around 1012 Hz (e.g.,

Narayan et al., 1995, 1998; Mahadevan, 1998; Yuan et al., 2002, 2003). To make detailed com-

parisons with Sgr A∗’s spectrum and rapid variability requires simulating the Sgr A∗accretion flow

with General Relativistic Magnetohydrodynamic (GRMHD) simulations (e.g., Mościbrodzka et al.,

2009; Dexter et al., 2010; Shcherbakov et al., 2012; Mościbrodzka et al., 2014; Chan et al., 2015a;

Ressler et al., 2017; Chael et al., 2018a). These simulations are complicated by the fact that the

low densities and high temperatures in ADAFs prevent ions and electrons from coming into ther-

mal equilibrium with each other. Chapters 1 and 2 address this problem, and describe radiative

GRMHD simulations of Sgr A∗ that self-consistently simulate electron and ion populations that

are not in mutual equilibrium.

When even the electron-electron collision time-scale becomes long in hot flows (Mahadevan &

Quataert, 1997), nonthermal electrons accelerated by plasma processes like shocks (e.g., Guo et al.,

2014) and magnetic reconnection (e.g., Sironi & Spitkovsky, 2011, 2014) can persist in the accretion

flow. These rapidly injected nonthermal electrons may generate the observed near-infrared (NIR;

Genzel et al., 2003), and X-ray flares (Neilsen et al., 2013; Zhang et al., 2017) seen from Sgr A∗.

The first spatially resolved observations of NIR flares by the GRAVITY interferometer revealed

circular motion (GRAVITY Collaboration et al., 2018b), indicating that the compact flares may

originate in “hot spots” of plasma near the black hole (Broderick & Loeb, 2006). The first steps

toward simulating these nonthermal particles self-consistently is the focus of Chapter 4.
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0.3 M87, extragalacধc jets, and magneধcally arrested disks

Only a few years after Schwarzschild, Curtis (1918) detected a linear feature emanating from the

giant elliptical galaxy Messier 87 (M87). Only much later was this observation appreciated as the

first detection of an astrophysical “jet” (Baade & Minkowski, 1954). The M87 jet extends outside

its host galaxy, up to 65 kpc, and it is pointed nearly directly at the Earth (the inclination angle

is ≈17◦; Mertens et al. 2016).

Synchrotron emission from extragalactic jets can dominate LLAGN spectra (Blandford & Königl,

1979; Falcke & Biermann, 1995). Very-long-baseline interferometry (VLBI) observations at radio

and millimeter wavelengths (e.g., Palmer et al., 1967; Reid et al., 1982; Junor et al., 1999; Kovalev

et al., 2007; Ly et al., 2007; Asada & Nakamura, 2012; Hada et al., 2016; Walker et al., 2018; Kim

et al., 2018) show that the M87 jet remains collimated on sub-parsec scales into the heart of the

galaxy, where it terminates in a bright radio core.

At frequencies higher than ∼86 GHz, Hada et al. (2011) showed that the radio core in M87 is

coincident with a supermassive black hole. The SMBH mass has been measured to be 6.2×109M⊙

from stellar dynamics in the surrounding galaxy nucleus (Gebhardt et al. 2011; assuming a distance

of D = 16.9 Mpc; Mei et al. 2007), but the mass measured from gas dynamics is a factor of two

smaller (Walsh et al., 2013). Like Sgr A∗ the M87 accretion flow is hot and dim. While Sgr A∗

apparently lacks jets in radio images (unless they are launched directly toward Earth; Issaoun et al.

2019), jets are launched from many AGN (see e.g., Bridle & Perley, 1984; Blandford et al., 2019,

for reviews).

The jet in M87 carries a large kinetic energy in the range P ∼ 1042 − 1045 erg s−1 (Reynolds

et al., 1996; Owen et al., 2000; Stawarz et al., 2006; de Gasperin et al., 2012). This power may be

extracted from the black hole spin itself by magnetic fields threading the event horizon (Blandford
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& Znajek, 1977; Tchekhovskoy et al., 2011). In thin disk models, the field lines extract rotational

energy from the black hole at a rate proportional to the square of both the dimensionless black

hole spin a = Jc/GM2 and the magnetic flux on the event horizon ΦBH. This Blandford-Znajek

mechanism produces a jet power (Tchekhovskoy et al., 2010)

PBZ ≈ 2.8 a2

(
ΦBH

50
√
Ṁc rg

)2

Ṁc2

≈ 3.6× 1042 a2

(
ΦBH

50
√
Ṁc rg

)2(
Ṁ

10−6ṀEdd

)(
M

109M⊙

)
erg s−1, (0.5)

where ΦBH/
√
Ṁc rg is the dimensionless magnetic flux on the horizon.

Simulations of thick ADAFs that launch relativistic jets show that they obey the same scaling

relation with spin and flux as Equation 0.5, but with a smaller prefactor (e.g., Sądowski et al.,

2013b; The Event Horizon Telescope Collaboration et al., 2019e). Strong jets like that from M87

are most easily launched by Magnetically Arrested Disks (MADs: Bisnovatyi-Kogan & Ruzmaikin,

1976; Narayan et al., 2003; Igumenshchev et al., 2003). MADs represent the opposite limit to

the weak magnetic flux mode of black hole accretion (Standard and Normal Evolution, or SANE;

Narayan et al. 2012). In MADs, coherent magnetic flux builds up on the black hole, saturating at

a dimensionless flux on the horizon ΦBH/
√
Ṁc rg ≈ 50. This buildup of flux limits accretion via

magnetic pressure. In GRMHD simulations (e.g., Igumenshchev et al., 2003; Tchekhovskoy et al.,

2011; McKinney et al., 2012; Sądowski et al., 2013b), MADs launch jets powered by the black hole

spin with wide opening angles and large jet powers. The large jet power and wide opening angle

observed in the M87 jet (∼55◦ at 43 GHz ; Walker et al., 2018) suggest that M87 may have a

magnetically arrested disk at its core. Chapter 3 explores MAD simulations of the M87 disk and

jet in radiative GRMHD simulations with self-consistent two-temperature evolution.
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0.4 The black hole shadow and the Event Horizon Telescope

Until this year (2019), all black holes were unresolved. To test models of the accretion flow or

jet-launching region, one had to rely primarily on the integrated emission from the accretion flow.

Resolving an image of the near-horizon region within a few rg of the event horizon was impossible,

due to the small angular scales involved. Prior to 2019, the Event Horizon Telescope (EHT), a

global millimeter VLBI array (The Event Horizon Telescope Collaboration et al. 2019b, hereafter

Paper II), constrained the compact structure in the cores of Sgr A∗ (Doeleman et al., 2008) and

M87 (Doeleman et al., 2012; Akiyama et al., 2015) to the scale of a few Schwarzschild radii, but

these early observations could not produce an image of this horizon-scale structure.

The geodesics of the Schwarzschild metric (Equation 0.1) indicate that photons travel on circular

orbits close to the black hole at rp = 3rg. The time (t) and azimuthal (ϕ) symmetries of the

Schwarzschild metric imply that the geodesics of a particle with four-velocity uµ has two conserved

quantities: E = −ut, the energy at infinity, and L = uϕ, the angular momentum at infinity (Carroll,

2004). Thus, working in units where c = 1, a photon on a circular orbit has a covariant four-velocity

uµ = (−E, 0, 0, L)µ.

Photon geodesics are null: uµuµ = 0. Expanding the null condition at the equatorial circular

photon orbit (θ = π/2, r = 3rg) gives:

gtt (ut)
2 + gϕϕ (uϕ)

2 = 0,

−
(
1− 2

rg
r

)−1
E2 +

1

r2 sin2 θ
L2 = 0,

L2 = 27 r2gE
2. (0.6)

Thus, at the last photon orbit, photons have a specific angular momentum ℓ = L/E =
√
27 rg. For
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a particle traveling at c at a large distance D from the black hole, the specific angular momentum ℓ

corresponds to the impact parameter b. Thus, in the Schwarzschild metric, photons with an impact

parameter bc =
√
27 rg are captured on the unstable circular photon orbit. Photons with an impact

parameter less than bc eventually plunge into the black hole (Hilbert, 1917). If the black hole were

illuminated from behind from the perspective of an observer at a large distance D, the black hole

would therefore have a silhouette with an apparent angular diameter θBH:

θBH =
2
√
27 rg
D

= 37.6

(
M

6.2× 109M⊙

)(
D

16.9Mpc

)−1

µas, (0.7)

where the values in Equation 0.7 are scaled relative to the values for the black hole in M87.2

Outside θBH, light reaches the observer. Inside is darkness; a “shadow” cast by the black hole

on the surrounding emission. In the Kerr (1963) metric, which describes black holes with angular

momentum, bc changes with a ray’s orientation relative to the angular momentum vector, so the

black hole no longer appears circular (Bardeen et al., 1972). However, this change is small, ≲4%

over the full range of black hole spin and viewing inclination (Chandrasekhar, 1983; Takahashi,

2004).

The shadow should be visible for astrophysical black holes surrounded by optically thin emission

from an accretion disk or jet (Luminet, 1979; Falcke et al., 2000). In 2017, the EHT observed M87

at 230 GHz with a full array of eight telescopes at six distinct geographic sites, with a nominal

resolution of ≈25µas (The Event Horizon Telescope Collaboration et al. 2019c, hereafter Paper III).

These observations were synthesized into an image (The Event Horizon Telescope Collaboration

et al. 2019d, hereafter Paper IV), using cutting-edge image reconstruction methods described in

Chapters 5–7, to produce the first image of the black hole shadow in M87. The emission in these first
2A microarcescond, 1 µas = 2.8 × 10−10 degrees, is approximately the angular size of a grain of rice on

the surface of the moon as viewed from Earth.
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EHT images of M87 is consistent with the physical predictions from a wide range of simulations

of the synchrotron emission from an accretion flow and jet a few Schwarzchild radii away from

the black hole event horizon (The Event Horizon Telescope Collaboration et al. 2019e, hereafter

Paper V), including the simulations presented in Chapter 3 of this work. The measured shadow

diameter of ∼40µas was used to determine the black hole mass as (6.5± 0.7)× 109M⊙ (The Event

Horizon Telescope Collaboration et al. 2019f, hereafter Paper VI), consistent with the Gebhardt

et al. (2011) results from stellar dynamics. Figure 0.1 presents an image of the supermassive black

hole in M87 from EHT observations reconstructed with the eht-imaging library (Chapter 6), as

well as an image from a radiative, two-temperature GRMHD simulation (Chapter 4), reconstructed

with the same technique. The EHT 2017 image is dominated by a ring of emission at the radius

of the lensed photon orbit of the supermassive black hole in M87 (The Event Horizon Telescope

Collaboration et al., 2019a).

The EHT also observed Sgr A∗ extensively during 2017. Sgr A∗ should have an even larger

shadow (with a mean diameter of 48µas depending on the inclination and spin), but producing an

image of Sgr A∗’s shadow from EHT data is complicated by its rapid variability (e.g., Yusef-Zadeh

et al., 2009) and interstellar scattering along the line of sight (e.g., Johnson et al., 2018). Imaging

of Sgr A∗ using 2017 EHT data is currently ongoing.

0.5 Simulaধng, imaging, outlook

The realization of the decades-long drive to produce an image of the black hole in M87 would not

have been possible without a confluence of experts from many fields: in the advanced engineering

and hardware development that made millimeter VLBI possible at all 8 EHT telescopes, in the

analysis and imaging of difficult millimeter VLBI data, and in the theoretical understanding of
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40 µas

Figure 0.1: (Left) the black hole shadow of M87 as resolved by the EHT on April 6, 2017. This image was recon-
structed with the eht-imaging library (Chapter 6) and has been convolved with a 15µas FWHM Gaussian kernel
(Paper IV). (Center) a simulated image of the M87 black hole from a radiative, two-temperature GRMHD simula-
tion (Chapter 3). (Right) a reconstruction of simulated data from the model image on EHT 2017 baselines, using
the same fiducial eht-imaging script used on the real data, and convolved with the same 15 µas kernel.

supermassive black hole accretion flows and jets. In my time with the global EHT collaboration, I

have established a unique position linking the last two of these domains. These two threads of re-

search – performing accretion simulations to investigate the role of particle heating and acceleration

in the plasmas around M87 and Sgr A∗ and designing new algorithms for reconstructing images

from EHT data – have never seemed less than essentially intertwined in my mind. Interpreting

EHT images in the context of LLAGN accretion models and simulations requires understanding

the processes that contribute to the emission that we see; understanding how different models and

theories can be tested with EHT data requires understanding how images are formed from these

challenging data and what features in these images are robust and which are more suspect.

This dissertation presents the most significant projects in these two strands of my research over

the past five years. Part I focuses on simulations of the accretion flows and jets around Sgr A∗ and

M87. In Chapter 1, I summarize the method used in the code KORAL to self-consistently solve for

the temperature of the emitting electrons in a simulation given a prescription for the underlying

plasma microphysics. Chapter 2 applies this method to four two-temperature simulations of Sgr A∗

using two different mechanisms for electron heating and compares the resulting images and spectra
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with VLBI observations and early EHT data. Chapter 3 repeats this exercise for the first MAD

simulations applied to M87. It finds (before any EHT 2017 data are considered) that MAD models

are natural fits to explain the large jet power and wide jet opening angle observed in VLBI images

of M87 at frequencies ≤86 GHz. In Chapter 4, I detail the algorithm for evolving nonthermal

electron populations I developed in KORAL, and discuss initial tests of this method. This method

will soon enable self-consistent simulations of the nonthermal particle injection and evolution that

may source flares and rapid variability in Sgr A∗.

Part II focuses on the imaging techniques and software I developed and that were critical in pro-

ducing the first image of M87 with the EHT. In Chapter 5, I discuss the principles of interferometry

and imaging with Regularized Maximum Likelihood (RML) techniques. Chapter 6 presents the

structure of the eht-imaging software library I developed to implement these new imaging methods.

Finally, in Chapter 7 I present the results of my work contributing to the global team effort to

produce the first image of a black hole (The Event Horizon Telescope Collaboration et al., 2019d).

The synthesis between advanced EHT imaging and accretion flow simulations has a bright future

in the emerging field of horizon-scale astrophysics. In the coming years, techniques and methods

developed in this thesis will be used as part of the community-wide effort to link EHT observa-

tions with information from across the electromagnetic spectrum. These new data, images, and

simulations will help us explore and better understand the dynamics and energetics of material

around supermassive black holes, the conditions which set how these black holes launch jets and

outflows to galactic scales, and what new avenues will become possible, using images of the black

hole shadow, to test the nature of spacetime close to the black hole’s event horizon.
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Part I
Simulations
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Black hole accretion simulations with

radiation and thermodynamics

General relativistic magnetohydrodynamic (GRMHD) simulations evolve an ionized, magnetized

plasma in a fixed background metric gµν . ADAF models for LLAGN accretion flows are opti-

cally thin and geometrically thick, making them particularly attractive targets for these grid-based

fluid simulations. Multiple GRMHD codes have been developed to evolve the plasma flow around

black holes in the Kerr metric (e.g., Komissarov, 1999; de Villiers et al., 2003; Gammie et al.,

2003; Tchekhovskoy et al., 2010; Sądowski et al., 2013a, 2014; McKinney et al., 2014; Ryan et al.,

2015; White et al., 2016; Chandra et al., 2017). GRMHD codes have been successfully used to

demonstrate that viscosity in these collisionless systems can arise from turbulence generated by the

magnetorotational instability (MRI: Balbus & Hawley, 1998; de Villiers et al., 2003; Narayan et al.,

2012) and to investigate the launching of jets powered by the black hole spin (e.g., McKinney, 2006;

Komissarov et al., 2007; McKinney & Blandford, 2009; Tchekhovskoy et al., 2011). They have also

been used to simulate emission and compare theory to observations in low accretion rate systems

like Sgr A* (e.g., Mościbrodzka et al., 2009; Dexter et al., 2010; Mościbrodzka & Falcke, 2013;

Mościbrodzka et al., 2014; Chan et al., 2015a,b) and M87 (e.g., Dexter et al., 2012; Mościbrodzka
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et al., 2016a, 2017).

The GRMHD equations on their own include no feedback from radiation on the dynamics or

energetics of the plasma flow. Since ADAF flows with accretion rates Ṁ ≲ 10−6ṀEdd are optically

thin, radiative feedback is likely dynamically unimportant and pure GRMHD codes are a good

choice for studying the dynamics of these systems. At intermediate accretion rates 10−6ṀEdd ≲

Ṁ ≲ 10−3ṀEdd, radiative cooling affects the gas temperature, and at high accretion rates Ṁ ≳

10−3ṀEdd, efficient cooling collapses the disk into an optically thick and geometrically thin state

described by the Shakura & Sunyaev (1973) solution.1

Without modifications to account for radiative cooling, GRMHD simulations are ill-suited to

explore disks in any state but the most optically thin ADAFs. While some studies have explored

higher accretion rate regimes by adding artificial cooling functions to the gas (e.g., Shafee et al.,

2008; Penna et al., 2010; Noble et al., 2011), “radiation GRMHD” or “GRRMHD” codes (e.g., Farris

et al., 2008; Roedig et al., 2012; Sądowski et al., 2013a, 2014; Ryan et al., 2015) allow for a more

self-consistent treatment of the physical interactions between gas and radiation at all accretion rates,

and they show particular promise for studying disks that transition between different accretion rates

and corresponding spectral states (e.g., in X-ray binaries Esin et al., 1997). Of particular note for

this work is the fact that while Sgr A∗ has an accretion rate ≲ 10−7ṀEdd (Marrone et al., 2007),

M87 accretes more efficiently and radiative feedback may begin to be important in setting the gas

temperature (Ryan et al., 2018).

While the radiation field may be dynamically unimportant in low accretion rate ADAFs, radiative

cooling is nevertheless important in determining the observable properties of these objects. In these

hot, diffuse flows, Coulomb coupling between electrons and ions is inefficient (Mahadevan, 1998).
1At the highest Eddington or super-Eddington accretion rates, photons become trapped in an extremely

optically thick disk. In these “slim-disk” systems (Abramowicz et al., 1988), most of the photons are advected
into the black hole, making these systems again radiatively inefficient, although radiation is dynamically
important.

18



Electrons and ions will have different temperatures, with the ratio set by the balance between

the viscous heating rates of the two species, the rate of energy transfer from ions to electrons by

Coulomb coupling, and the rate of radiative cooling of the electrons. Thus, to obtain spectra and

images from GRMHD simulations for comparison with data, it is usually necessary to impose ad

hoc assumptions about the electron energy distributions in post-processing. Often, the electron-

to-gas temperature ratio is set at a constant value throughout the simulation. (e.g., Mościbrodzka

et al., 2009; Dexter et al., 2010), or the simulation is manually divided into jet and disk regions

with different temperatures (e.g., Mościbrodzka & Falcke, 2013; Mościbrodzka et al., 2014; Chan

et al., 2015a,b). In this approach, the electron temperature is adjusted after the fact to find the

best fit to the measured spectrum, with no input from the physics of the underlying electron-ion

thermodynamics.

Another approach to simulating these sources is to self-consistently evolve populations of ions

and electrons, each with its own thermodynamics and interactions with each other and the radiation

field. This approach has been pursued with several different codes (Ressler et al., 2015; Sądowski

et al., 2017; Ryan et al., 2017), all of which evolve a thermal electron population alongside the

other GRMHD or GRRMHD fluid variables. In the GRRMHD code KORAL in particular, both ion

and electron populations are evolved simultaneously along with the total gas and radiation in a

GRRMHD simulation; the particles gain and lose energy from adiabatic compression/expansion,

Coulomb coupling, and radiative cooling. In this way, the electron temperature is obtained ‘on

the fly’ during the simulation and is not modeled during post-processing. KORAL and other two-

temperature GRMHD methods have been used successfully to produce spectra and images from

several recent simulations of Sgr A∗ (Ressler et al., 2017; Chael et al., 2018a) and of M87 (Ryan

et al., 2018; Chael et al., 2019b).

While the physics of electron cooling is well understood and relatively straightforward to incor-
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porate in these simulations, the full range of physical processes that govern dissipation and particle

heating at the smallest scales in hot accretion flows is still unconstrained. The dissipation occurs

on scales much smaller than the finest resolved by the grid. At current resolutions, while the total

amount of viscous dissipation in a cell can be estimated numerically, the fraction of the dissipated

energy that goes into the electrons or the ions must be determined by a sub-grid prescription. Most

works in this field (Ressler et al., 2015; Sądowski et al., 2017; Ressler et al., 2017; Ryan et al., 2017)

have used a single heating prescription based on the Landau-damping of weakly collisional MHD

turbulence (Howes, 2010). The simulations of Sgr A∗ and M87 in the following chapters (2–3)

investigate the importance of this choice by comparing results with a new prescription derived mo-

tivated by the assumption that magnetic reconnection is the process that truncates the turbulent

cascade in these plasmas (Rowan et al., 2017).

This chapter reviews the full method for two-temperature particle evolution implemented in

KORAL (Sądowski et al., 2013a, 2014, 2017). Except for some small modifications, this method

is the same as that originally presented in Sądowski et al. (2017). Chapters 2 and 3 apply this

method to simulations of Sgr A∗ and M87, and Chapter 4 extends it to evolve nonthermal, high-

energy electrons in parallel with the thermal species. The GRMHD equations without radiation

are introduced in Section 1.1, and radiative feedback with M1 closure is discussed in Section 1.2.

Section 1.3 presents KORAL’s method for evolving thermal electron and ion populations and handling

their interactions. Finally, Section 1.4 introduces the plasma physics underlying the two prescrip-

tions for electron heating (Landau damping and magnetic reconnection) that are investigated in

the following chapters.
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1.1 GRMHD equaধons

In an ionized plasma (assumed for the reminder of this work to be pure Hydrogen), charge neutrality

demands that electrons and ions have the same number density n and four velocity uµ everywhere.

However, without efficient processes to bring them into equilibrium, the species can in principle

have distinct local thermal energy densities ue ̸= ui and temperatures Te ̸= Ti. Standard single-fluid

GRMHD simulations ignore the distinctions between the individual species, and treat electrons and

ions together as a single fluid. This fluid is characterized by a mass density dominated by the ions,

ρ = mpn, and a total internal energy density u = ue + ui.

The total pressure p = pe + pi is related to the energy density u by the ideal gas law with an

effective adiabatic index Γgas:

p = (Γgas − 1)u. (1.1)

In single-fluid GRMHD simulations, the adiabatic index Γgas is typically fixed at the non-relativistic,

monatomic value Γgas = 5/3. In a hot accretion flow, temperatures frequently reach values > 1010 K

in the inner regions (Yuan & Narayan, 2014). At these temperatures, electrons become relativistic,

decreasing their adiabatic index from 5/3 towards 4/3. Thus, the effective gas adiabatic index Γgas

takes on values in the range 4/3 ≤ Γgas ≤ 5/3 depending on the local temperatures and energy

densities of the two component species. KORAL treats this variable adiabatic index self-consistently

(Section 1.3), but this effect can also be approximated in other codes by fixing an intermediate

value everywhere (e.g., Γgas = 13/9; Ryan et al., 2018).

Under the ideal MHD assumption of infinite conductivity, the dual Faraday tensor F ∗µν can be

completely described by a magnetic field four-vector bµ:

F ∗µν = bµuν − bνuµ. (1.2)
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KORAL uses Heaviside-Lorentz units, so that the rest-frame magnetic field strength in Gauss is

|B| =
√

4πbµbµ.2

The MHD stress-energy tensor Tµν consists of contributions from the fluid variables (ρ, u, p, uµ)

as well as the magnetic field four-vector bµ (Gammie et al., 2003):

Tµν =
(
ρ+ u+ p+ b2

)
uµuν +

(
p+

1

2
b2
)
δµ ν − bµbν . (1.3)

In standard GRMHD simulations, the fluid is evolved using the conservation of the matter current

ρuµ and the stress-energy Tµν , combined with the ideal MHD induction equation for bµ (Gammie

et al., 2003):

(ρuµ);µ = 0, (1.4)

Tµν;µ = 0, (1.5)

F ∗µ
ν;µ = 0. (1.6)

GRMHD codes like KORAL typically use a second-order Runge-Kutta scheme to advance the fluid

quantities and magnetic field at each time step. The advection of quantities across cells is handled

explicitly by reconstructing Lax-Friedrichs fluxes at the cell walls using the Piecewise Parabolic

Method (or a first-order flux-limited method). Geometrical terms (i.e., the covariant derivative

terms involving Christoffel symbols in Equations 1.4–1.6) are added as source terms at cell centers.

The full explicit advective algorithm used in KORAL is described in Sądowski et al. (2013a, 2014).
2This chapter and the KORAL code use units where c = 1.
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1.2 Radiaধon GRMHD

KORAL incorporates radiation feedback by treating the frequency-integrated radiation field Rµν as a

massless perfect fluid evolved in parallel to Tµν . Under the M1 closure scheme (Levermore, 1984;

Sądowski et al., 2013a, 2014; McKinney et al., 2014), the bolometric radiation field is fixed by its

rest frame energy density Ē and a timelike four velocity uµR ̸= uµ of the frame where the radiation

is isotropic:

Rµν =
4

3
ĒuµRuRν +

1

3
Ēδµν . (1.7)

In addition to the radiation energy density and frame velocity, KORAL also tracks the rest frame

photon number density n̄R, which encodes information about the mean photon frequency and the

radiation temperature TR. Under the assumption that the radiation spectrum is a grey body

(Sądowski & Narayan, 2015), the radiation temperature is

TR =
Ê

2.7012 kBn̂R
, (1.8)

where Ê and n̂R are the radiation energy density and photon number transformed to the fluid

frame. Throughout this work, quantities in the radiation rest frame are denoted with bars, and

quantities in the fluid frame are denoted with hats.3

The set of general relativistic, radiative, magnetohydrodynamic (GRRMHD) equations for evolv-

ing the total fluid, the magnetic field, the frequency-integrated radiation field, and the photon
3In contrast to this frequency-integrated approach, Ryan et al. (2015, 2017, 2018) use a Monte-Carlo

approach which represents the radiation field with many individual particle “superphotons” with different
frequencies that are emitted and absorbed in between the fluid evolution timesteps.

23



number are then (Sądowski et al., 2014; Sądowski & Narayan, 2015)

(ρuµ);µ = 0, (1.9)

Tµν;µ = Gν , (1.10)

Rµν;µ = −Gν , (1.11)

F ∗µ
ν;µ = 0, (1.12)

(n̄Ru
µ
R);µ = ˙̄nR. (1.13)

Gν is the the four-force density that couples the radiation and gas. In the fluid rest frame:

Ĝ 0 = ρ (κP,aÊ − 4πκP,eB̂) + Ĝ0
IC, (1.14)

Ĝ i = (ρκR + ρκes)F̂ i. (1.15)

In these equations, the κ factors are the frequency-averaged grey opacities for the thermal radiative

processes, Ĝ0
IC is the fluid-frame thermal energy loss from inverse Compton scattering (see Sądowski

& Narayan 2015 for the full expression), and B̂ = σSBT 4
e /π is the electron blackbody radiance (σSB

is the Stefan-Boltzmann constant). F̂ i is the fluid-frame radiation momentum flux, computed from

the fluid-frame radiation tensor; F̂ i = R̂ 0 i.

Following Mihalas & Mihalas (1984), KORAL uses the Planck-averaged mean opacities κP,e and κP,a

weighted for emission and absorption in Ĝ0 (the energy equation 1.14), and it uses the Rosseland-

averaged mean opacity κR in Ĝi (the momentum equation 1.15). The full expressions for these

opacities as a function of number density and temperature for both synchrotron and free-free

emission are given in Sądowski et al. (2017).

The electron scattering opacity is κes; it includes a Klein-Nishina factor that lowers the scattering
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cross section at high photon energies (Buchler & Yueh, 1976):

ρκes = nσT

[
1 +

TR
4.5× 108K

]0.86
cm−1. (1.16)

The frame-invariant photon number source term in Equation 1.13 is

ˆ̇nR = ˆ̇nR, syn + ˆ̇nR, brem − ρκn,an̂R. (1.17)

The first term in Equation 1.17 is from synchrotron emission. Electrons at all energies produce the

same number of synchrotron photons (Rybicki & Lightman, 1979):

ˆ̇nsyn = ne

[
1.46× 105

(
B

1G

)]
. (1.18)

The second term is the production of photons from bremsstrahlung emission, and the last term is

the photon loss rate from absorption by the thermal electrons, which is expressed in terms of a

number absorption opacity κn,a (see Sądowski & Narayan 2015; Sądowski et al. 2017 for the full

expressions).

KORAL solves Equations 1.9– 1.13 using a split explicit-implicit scheme. The advection of quantities

across cells is first handled explicitly. The source terms in the evolution equations which represent

the coupling between matter and radiation are then applied at each cell center (Sądowski et al.,

2013a, 2014, 2017) using a Newton-Raphson solver to solve the implicit coupling equations for the

evolved quantities.
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1.3 Electron-ion thermodynamics

In moving beyond single-fluid GRMHD to evolve electrons and ions independently, both species

are assumed to share the same fluid velocity uµ and the same number density by charge neutrality:

ne = ni = ρ/mp. The entropy per particle of each, se and si, are the fundamental variables, and

the temperatures Te, Ti and energy densities ue, ui are then functions of the species entropy and

number density.

A given particle species s (electrons or ions) with a given temperature Ts and number density

ns has a pressure and energy density related by the ideal gas law:

ps = nskBTs, (1.19)

us =
ps

Γs(Θs)− 1
. (1.20)

If the particles are in a in a relativistic, nondegenerate thermal Maxwell-Jüttner distribution, the

adiabatic index is a function of the dimensionless temperature Θs = kBTs/msc
2 (Chandrasekhar,

1939):

Γs(Θs)− 1 = Θs

(
3K3 (1/Θs) +K1 (1/Θs)

4K2 (1/Θs)
− 1

)−1

, (1.21)

where Km(x) is the modified Bessel function of order m. The classical entropy per particle ss is

then

ss/kB =
K1 (1/Θs)

ΘsK2 (1/Θs)
+ ln

[
ΘsK2 (1/Θs)

ns

]
+ C, (1.22)

where C is an integration constant.

Because the exact expressions in Equations 1.21 - 1.22 involve Bessel functions and are difficult
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to invert, KORAL uses approximate forms. This self-consistent approximation is based on a fitting

function to the specific heat at constant volume, which can be integrated to find expressions for

the internal energy density and entropy per particle (see Appendix A of Sądowski et al. 2017). The

approximate equation for the internal energy density used in KORAL is:

us(Θs) = nsmsc
2 Θs

Γs(Θs)− 1
≈ nsmsc

2Θs

(
3− 3

5Θs
ln
[
1 +

5Θs

2

])
, (1.23)

The entropy per particle under this approximation is then

ss/kB ≈ ln
[
Θ

3/2
s (Θs + 2/5)3/2

ns

]
+ C, (1.24)

and the arbitrary integration constant can be set to C = 0. Equation 1.24 is easy to invert to

obtain the species dimensionless temperature Θs from the number density and entropy:

Θs ≈
1

5

√1 + 25

[
ns exp ss

kB

]2/3
− 1

 . (1.25)

Unfortunately, Equation 1.23 cannot be analytically inverted to solve for Θs from us. Since this

inversion is only needed a few times per timestep, KORAL uses a Newton-Raphson solver to invert

Equation 1.23 when necessary. This approach differs from the original treatment in Sądowski et al.

(2017) which used a simpler but inconsistent fitting function for us(Θs).

Because the separate species pressures and energy densities must add to the total gas pressure

and energy density (pi + pe = p, ui + ue = u), the gas temperature and adiabatic index are

Tgas =
1

2
(Ti + Te) (1.26)

Γgas − 1 =
(Γi − 1) (Γe − 1) (Ti/Te + 1)

(Ti/Te) (Γe − 1) + (Γi − 1)
. (1.27)
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The species entropies are evolved in the simulation using the first law of thermodynamics in

covariant form:4

Te (nseuµ);µ = δeqv + qC − Ĝ0, (1.28)

Ti (nsiuµ);µ = (1− δe)qv − qC, (1.29)

where qv is the dissipative heating rate, δe is the fraction of the dissipative heating that goes into

electrons, qC is the energy exchange rate from ions to electrons due to Coulomb coupling (Stepney

& Guilbert, 1983), and Ĝ0 is the radiative cooling rate (Equation 1.14).

In the absence of Coulomb coupling qC, radiative cooling Ĝ0, and dissipative heating qv , the

species entropies are conserved and the particles heat and cool only due to adiabatic compression

and expansion. Equations 1.28–1.29 can then be evolved as conservation laws for se and si under

a standard finite-difference scheme. The Coulomb coupling qC and radiative cooling rates Ĝ0 are

analytic functions of the local plasma conditions and can be applied as source terms in the usual

way (Sądowski et al., 2017)

The dissipative heating qv, however, arises in accretion systems at scales far smaller than the

grid-scale from physical processes which may include turbulent damping, magnetic reconnection,

and shock heating. Global simulations cannot resolve these processes; they can, however, identify

the total dissipative heating rate qv numerically at the grid scale.

The total dissipative heating qv is identified numerically by evolving the thermal entropies adi-

abatically over a proper time step ∆τ . That is, by setting the right sides of Equations 1.28 and

1.29 to zero, the code obtains the adiabatically evolved entropies si, adiab and se, adiab, and the cor-
4 In the rest frame, both Equations 1.28 and 1.29 reduce to the familiar first law of thermodynamics,

T d(n s)
dτ = q+ − q− = heating rate − cooling rate.
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responding adiabatically evolved energy densities, ui, adiab and ue, adiab. To estimate the dissipative

heating in the total fluid, KORAL then compares the sum of the adiabatically evolved energy densities

to the separately-evolved total gas energy density u:

qv =
1

∆τ
[u− ui, adiab − ue, adiab] . (1.30)

A complication of using Equations 1.28–1.30 to adiabatically evolve the species entropies and

compute the dissipative heating is that physically, entropy density is not exactly conserved on a

finite grid, despite the form of Equations 1.28–1.29. Solving these equations with a finite volume

method, gas parcels (fluxes at cell walls) are heated and cooled individually from compression

or expansion, and then their entropies are summed. Physically, however, when two gas parcels

are brought together in a cell with finite extent, the total energy density should be kept constant,

increasing the entropy. That is, in solving the source-free version of Equations 1.28–1.29 with finite-

volume methods, the entropy will be preserved exactly, and the final energy density will thus be

underestimated. As a result, the viscous heating identified by Equation 1.30 will be systematically

too large.

To avoid this problem, KORAL mixes the entropies from neighboring cells at constant density.5 In

the explicit evolution of Equations 1.28–1.29 the code identifies the initial values of the entropy flux

on each of the cell walls, as well as the mixing fractions which they contribute to the total entropy

increase in the cell. It then takes these same mixing fractions and uses them to instead add up the

energy densities in the boundary entropy fluxes, keeping the fluid density fixed.

After the total viscous heating rate qv is computed numerically, it must be split up between

ions and electrons. The fraction of the heating that goes into the electrons, δe is determined from
5As noted in (Sądowski et al., 2017), mixing at constant pressure may be a more consistent procedure,

but it is much more computationally intensive.
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sub-grid physics as a function of the local plasma parameters.

1.4 Plasma parameters and parধcle heaধng prescripধons

This work considers simulations with two different sub-grid prescriptions for δe, the fraction of the

local dissipative energy generated by the simulation that heats the electrons. The value of δe is

determined by plasma processes that occur below the grid scale. Sub-grid models for these physics

depend on three local plasma physics parameters: the “plasma-beta” βi, the magnetization σi, and

the temperature ratio Ti/Te.

The plasma-beta parameter βi is the ratio of the local thermal ion pressure to the magnetic

pressure:

βi =
8π nikBTi

|B|2
. (1.31)

In simulations of hot accretion flows, βi ≳ 10 in the midplane, but above and below the midplane

βi can drop to βi ∼ 1. In the magnetically-dominated jet region close to the axis βi < 1.

The magnetization σi compares the magnetic energy density to the rest-mass energy density of

the ion-dominated fluid:

σi =
|B|2

4π nimic2
. (1.32)

In SANE accretion flows, σi < 1 everywhere except in the innermost jet region, but in MAD flows

σi can exceed unity in the disk inside ∼5 gravitational radii. Even in weakly magnetized flows, σi is

still relatively high compared to more familiar environments such as the non-relativistic solar wind

(σi ≪ 1).
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Figure 1.1: The two prescriptions for electron heating considered in this work. (Left) Turbulent cascade heating
prescription (Howes, 2010). The electron heating fraction δe is shown as a function of the plasma-beta parameter
βi and the temperature ratio Ti/Te. This prescription transitions rapidly from putting most of the dissipated energy
into electrons at low βi to putting most of the dissipated energy into ions at high βi. The red contour denotes
δe = 0.5. (Right) Reconnection heating prescription (Rowan et al., 2017; Chael et al., 2018a) obtained by fitting
to PIC simulation data. For clarity, this figure sets Ti = Te and plots δe as a function of Ti and βi instead of the
PIC simulation variables βi and σw. In this prescription, δe never exceeds 0.5.

1.4.1 Heaধng from Landau-damped turbulence

The Howes (2010) prescription for δe is based on a model of plasma turbulence truncated by

Landau damping of turbulent eddies in a weakly collisional plasma at small scales. The Howes

prescription is based on nonrelativistic calculations with σi ≪ 1 (Howes et al., 2008a,b) and while

it matches solar wind measurements (Howes, 2011), it may not be well-adapted to relativistic

systems like hot LLAGN accretion flows. Recently, however, Kawazura et al. (2019) performed

numerical simulations of the turbulent damping process that indicate the qualitative behavior of

the Howes (2010) prescription holds even in relativistic turbulent plasmas. The full Howes (2010)

31



fitting function is

δe =
1

1 + fe
, (1.33)

fe = c1
c22 + β

2−0.2 log
10
(Ti/Te)

i
c23 + β

2−0.2 log
10
(Ti/Te)

i

√
miTi
meTe

e−1/βi , (1.34)

where c1 = 0.92 and c2 = 1.6Te/Ti, c3 = 18 + 5 log
10
(Ti/Te) if Ti > Te, and c2 = 1.2Te/Ti, c3 = 18

if Ti < Te.

The Howes turbulent cascade prescription is a weak function of the temperature ratio Te/Ti but

a strong function of βi (see Figure 1.1). It gives most of the turbulent heating to electrons at low

βi, and conversely gives most of the heating to ions at high βi. This is a general result predicted

for damped MHD turbulence (Quataert, 1998).

Since δe ≈ 1 in regions of low βi, when the Howes turbulent cascade prescription is applied to

accretion simulations, the resulting electron temperature will be higher in the polar region when

compared to the equatorial plane. While in general radiation cools electrons to lower tempera-

tures than ions, using this prescription can result in an electron temperature that exceeds the ion

temperature in the jet region (where βi ≪ 1).

1.4.2 Heaধng from magneধc reconnecধon

Another model for turbulent dissipation suggests that MHD turbulence may instead be truncated at

small scales by magnetic reconnection (Carbone et al., 1990; Boldyrev & Loureiro, 2017; Loureiro &

Boldyrev, 2017; Mallet et al., 2017; Comisso & Asenjo, 2018). Turbulent eddies become sheet-like,

and they naturally fragment into plasmoids/magnetic islands via the tearing mode instability of

reconnecting current sheets. One would then expect that energy dissipation in MHD turbulence is

ultimately mediated by small-scale reconnection.
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Rowan et al. (2017) measured electron and ion heating rates in fully kinetic particle-in-cell

(PIC) simulations of trans-relativistic reconnection.6 In these PIC simulations, the strength of the

magnetic field is parametrized by the magnetization as defined with respect to the fluid enthalpy

w:

σw =
|B|2

4π w
=

|B|2

4π (nimic2 + Γiui + Γeue)
. (1.35)

If Te = Ti, σw can be expressed as

σw|Te=Ti =
2

βi
(
Θ−1

i + Γi
Γi−1 + Γe

Γe−1

) . (1.36)

From Equation 1.36, it is apparent that for a given σw, βi has a maximum value βi,max = 1/4σw

which is achieved in the limit when both species are highly relativistic and the thermal energy

dominates the rest mass energy (Θi ≫ 1, Γi,e → 4/3).

The magnetization σw represents the initial magnetic energy per electron-proton pair in units

of the initial particle enthalpy. Through the reconnection of magnetic fields, some of this initial

magnetic energy can be transferred from the electromagnetic field to particles, as plasma passes from

the pre-reconnection ‘upstream’ to the post-reconnection‘downstream’ region. In the simulations

of Rowan et al. (2017), plasma was initialized with a given temperature ratio Te/Ti, magnetization

σw, and plasma-beta βi in the upstream region; the heating of electrons and protons was assessed

by comparing the internal energy of particles in the upstream to those in the reconnection outflows.

The irreversible heating ratios δe from Rowan et al. (2017) can be fit using a simple functional
6See also Werner et al. (2018) for a similar study. Rowan et al. (2019) studies the case where the magnetic

field perpendicular to the reconnecting field lines is non-zero.

33



10−5 10−4 10−3 10−2 10−1 100 101

βi

0.0

0.1

0.2

0.3

0.4

0.5

0.6

δ e

σw = 0.03

σw = 0.1

σw = 0.3

σw = 1

σw = 3

σw = 10

Figure 1.2: Reconnection heating prescription (Equation 1.37) fit to PIC simulation data from Rowan et al. (2017).
The irreversible heating fraction δe is plotted against βi for various values of magnetization σw, indicated by
the color. Points show the results of simulations and lines show a fit to these data. Error bars indicate, roughly,
±1.0σ confidence intervals on the heating fractions extracted from each PIC simulation. For a given σw, the max-
imum allowed βi, where the ions and electrons both are ultra-relativistic, is βi,max = 1/4σw. The functional form
constrains the heating fraction δe → 0.5 as βi → βi,max.

form:

δe =
1

2
exp

[
−(1− βi/βi,max)

0.8 + σ0.5w

]
, (1.37)

where βi < βi,max = 1/4σw. This fit has the expected asymptotic behavior. For example, when

βi → βi,max, δe = 0.5 for any value of σw. Similarly, when σw ≫ 1, δe = 0.5, independent of βi.

Figure 1.2 shows the irreversible heating fractions δe as measured in PIC simulations from Rowan

et al. (2017). The initial conditions of the upstream plasma in these simulations span the trans-

relativistic regime of reconnection. In all PIC simulation data presented, the upstream temperature

ratio is fixed to unity (Te/Ti = 1) and the mass ratio is the physical mp/me = 1836. For these PIC
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simulations, the ratio of ion thermal to magnetic pressure spans the range 10−4 < βi < 10, and the

magnetization ranges from 0.03 < σw < 10. Each curve in Figure 1.2, corresponding to a particular

value of σw, is plotted as a function of βi up to its maximum possible value βi,max = 1/4σw. The

dashed black line at δe = 0.5 indicates the limit for which electrons and ions have comparable

heating efficiencies, δe → 0.5.

Figure 1.1 shows that Equation 1.37 has qualitatively distinct behavior from the Howes turbulent

cascade heating prescription, Equation 1.33. At fixed σw, taking βi → βi,max leads to δe → 0.5, while

taking high magnetizations σw ≫ 1 also leads to δe → 0.5. Plotting Equation 1.37 as a function of

Ti and βi, making the assumption that Ti = Te in Figure 1.1, it is apparent that in the regime of

interest for ADAF simulations (Te ∼ 1010–1012 K), δe is relatively low, δe ≈ 0.2–0.3. In contrast to

the turbulent heating model, δe never exceeds 0.5, indicating that one should never expect Te > Ti

in accretion simulations using this model. For values βi ≪ βi,max, the irreversible heating fraction

δe approaches a constant value that depends only on the magnetization; this asymptotic value of

δe at βi ≪ βi,max decreases with the magnetization. In the limit of non-relativistic reconnection

(σw ≪ 0.1), Equation 1.37 yields δe → 0.14, which is consistent with the expectation that the

heating fraction in the nonrelativistic reconnection limit is independent of magnetization. This

result is in rough agreement with recent laboratory experiments (Eastwood et al., 2013; Yamada

et al., 2014) and spacecraft observations (Phan et al., 2013, 2014).

In all the PIC simulations of Rowan et al. (2017), the magnetization σw ≥ 0.03, while the

accretion simulations presented in Chapters 2 and 3 have σw ≲ 10−3 in the midplane of the accretion

disk at radii larger than r ≳ 25 rg. If the behavior of δe from reconnection changes in the low σw

regime, this will have a major effect on the results of global two-temperature simulations. Future

PIC studies are needed to investigate electron heating from reconnection at low magnetization,

σw < 0.03.
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In addition, the PIC simulations in Rowan et al. (2017) focused on the case of anti-parallel re-

connection. This fact may explain in part the discrepancy between the heating efficiencies quoted

in Rowan et al. (2017) and the conclusions of Numata & Loureiro (2015), who performed gyroki-

netic simulations (implicitly assuming strong guide fields) of non-relativistic reconnection. They

found an excess of electron heating at low βi, similar to the qualitative predictions of the Howes

(2010) prescription.7 Rowan et al. (2019) investigated the efficiency of electron heating in PIC

simulations of plasmoid-dominated reconnection in the strong guide field regime. They found that

the qualitative behavior of reconnection heating in this regime is more similar to the Howes (2010)

prescription than the zero guide-field case considered in Rowan et al. (2017) and this work. Finally,

reconnection in collisionless accretion flows itself likely occurs at the endpoint of a turbulent cas-

cade. Considering the effects of turbulence between the grid scale and the reconnection scale may

modify the results used (e.g., Shay et al., 2018).

7Still, the ratio of ion to electron heating efficiency that they measured at low beta (∼ 10−3 for βi = 0.01)
is much higher than the prediction of the Howes (2010) model.
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Electron heating in simulations of Sgr

A*

The Galactic Center compact radio source Sagittarius A* (Sgr A∗) hosts a supermassive black hole

of massM = (4.1±0.03)×106M⊙ (GRAVITY Collaboration et al., 2018a). Sgr A∗’s low luminosity

∼ 10−9 LEdd (Falcke et al., 1998; Genzel et al., 2003; Baganoff et al., 2003) and correspondingly

low mass accretion rate ≲ 10−7 ṀEdd (Agol, 2000; Bower et al., 2003; Marrone et al., 2007) puts

it squarely in the ADAF regime of black hole accretion. The density of accreting gas around Sgr A∗

is estimated to be quite low (n ∼ 106 cm−3), so as discussed in the Introduction, the electron-ion

thermalization time in Sgr A∗ likely exceeds the accretion time.

GRMHD simulations have been powerful tools for exploring the physics of Sgr A∗’s accretion

flow and the factors that contribute to its spectrum, compact emission, and rapid variability. As

discussed in Chapter 1, standard GRMHD simulations do not solve for the electron temperature Te

throughout the flow. Te is typically set manually in a radiative transfer postprocessing step, either

by fixing the temperature ratio Te/Ti to a constant value everywhere (e.g., Mościbrodzka et al.,

2009; Dexter et al., 2010), or by dividing the simulation into jet and disk regions with different

temperatures (e.g., Mościbrodzka & Falcke, 2013; Chan et al., 2015a). In particular, Event Horizon
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Telescope (EHT) data and images of the inner Sgr A∗ accretion flow at 230 GHz (e.g., Doeleman

et al., 2008; Johnson et al., 2015) hold immense promise for understanding the accretion physics

operating just a few Schwarzschild radii outside Sgr A∗’s event horizon. For this reason, many

studies of GRMHD simulations adapted to Sgr A∗ have focused on predictions for the optically

thin 230 GHz emission surrounding the black hole shadow (e.g., Dexter et al., 2010; Shiokawa,

2013; Mościbrodzka et al., 2014; Chan et al., 2015a).

Chapter 1 developed an alternative approach to simulating systems like Sgr A∗ and producing

spectra and images from these models. This approach, developed for the GRRMHD code KORAL

by Sądowski et al. (2017), solves for Te self-consistently during the run of the simulation using a

sub-grid model for the underlying dissipation physics that sets the ratio of the electron and ion

heating rates. Ressler et al. (2017) first used a similar method to successfully produce a model

of Sgr A∗ in line with observations of the quiescent spectrum and variability properties. While

a significant advance, their method did not include radiative feedback and used fixed adiabatic

indices to save computational resources by solving the evolution equation for the electron entropy

in post-processing. The approach in Sądowski et al. (2017) is a more general framework, where

ions and electrons are evolved simultaneously along with the total gas and radiation including

radiative and Coulomb couplings. Furthermore, Ressler et al. (2017) and earlier studies only used

the Howes (2010) prescription for the electron heating fraction δe. This model was originally

developed to explain non-relativistic solar wind observations, and it is unclear if it is applicable in

the environment around Sgr A∗.

This chapter uses the technique developed in Chapter 1 to perform four 3D two-temperature

simulations of Sgr A∗ (originally presented in Chael et al. 2018a). These four simulations explore

both the Howes (2010) Landau-damped cascade prescription for electron heating (Section 1.4.1) and

a prescription for magnetic reconnection heating (Section 1.4.2) fit to particle-in-cell simulation data
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from Rowan et al. (2017). The two heating prescriptions are compared in simulations with both

low (a = 0) and high (a = 0.9375) black hole spins. The predicted spectra, lightcurves, and images

at 230 GHz and lower frequencies are compared to the available data. While it is not possible

to make conclusive statements about the plasma microphysics or accretion physics operating in

Sgr A∗ with this limited survey of the parameter space, the analysis of this chapter is able to rule

out certain parameter combinations and demonstrates the power of comparing these self-consistent

simulations to data (including from the EHT) to make progress toward understanding the plasma

physics in the Sgr A∗ accretion flow.

It is important to note that, in Sgr A∗, electron-electron collisions may not be sufficient to

entirely relax the electron distribution function to a thermal Maxwellian (Mahadevan & Quataert,

1997). Shocks and magnetic reconnection can accelerate a fraction of the electrons into relativistic

nonthermal distributions which persist alongside the lower-energy thermal distribution. These

nonthermal electrons may be responsible for Sgr A∗’s continual flares across the spectrum (e.g.,

Marrone et al., 2008; Yusef-Zadeh et al., 2009; Eckart et al., 2012). To explore nonthermal

particle evolution and emission, Chael et al. (2017) introduced an extension of the two species

thermal approach (Sądowski et al., 2017) to evolve arbitrary electron distributions in accretion

simulations. This method is presented in Chapter 4.

2.1 Simulaধons

2.1.1 Units

The accretion simulations presented in this chapter use a black hole mass fixed to a value appropriate

for Sgr A∗, M = 4× 106M⊙ (Gillessen et al., 2009; Chatzopoulos et al., 2015). The gravitational

radius is rg = GM/c2 = 6× 1011 cm = 0.04AU, and the gravitational time-scale is tg = rg/c = 20 s.
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The Eddington accretion rate ṀEdd = 0.16M⊙ yr−1, and the Eddington luminosity LEdd = 5×1044

erg s−1. For this value of the Eddington accretion rate (Equation 0.3) the efficiency is set at

η = 0.057, the value for a thin accretion disk with a = 0 (Novikov & Thorne, 1973).

2.1.2 Simulaধon grid and iniধal condiধons

Chael et al. (2018a) ran four simulations in the Kerr metric using a modified Kerr-Schild coordinate

grid. Two spin values were considered: a = 0 (zero spin case) and a = 0.9375 (high spin case). One

simulation for each of the heating prescriptions described in Section 1.4 was run at each black hole

spin value. This chapter thus considers four models: a spin zero turbulent heating prescription

model, H-Lo, a spin zero model using the magnetic reconnection heating prescription, R-Lo, a

spin a = 0.935 turbulent heating prescription model, H-Hi, and a corresponding a = 0.9375 model

heated by magnetic reconnection, R-Hi. The simulation parameters are summarized in Table 2.1.

Each simulation was run on a 3D grid with a resolution of 256×192×96 cells in radius, polar angle,

and azimuth. The radial cells are distributed exponentially from a spin-dependent Boyer-Lindquist

radius rmin inside the black hole horizon out to 5 × 103 rg. The azimuthal cells are distributed

uniformly over the range [−π, π], while the polar angle cells are sampled over the interval [0, π]

using the function presented in Appendix B. To better resolve the magnetorotational instability in

the disk, the grids more densely sample the regions closer to the equatorial plane.

The initial gas torii were set up using the Penna et al. (2013) equilibrium solution, with weak

dipolar magnetic field loops added in the (r, θ) plane. The initial energy density in electrons was

taken as one percent of the total gas energy density, with the remainder in the ions. The initial torii

and simulation grids are presented in more detail in Appendix B, and are displayed in Figure B.1.

To speed up the simulations during the initial stages, the simulations were first evolved for a

total time of 2 × 104 tg in 2D, suppressing the ϕ coordinate and assuming axisymmetry. This
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Table 2.1: Setup of the four Sgr A∗ simulations.

Model Spin Heating rmin rmax Nr × Nθ × Nϕ [ti, tf] (tg)
H-Lo 0 Turb. Cascade 1.5 5000 320× 192× 96 [2.8× 104, 3.3× 104]
R-Lo 0 Mag. Reconnection 1.5 5000 320× 192× 96 [2.5× 104, 3.0× 104]
H-Hi 0.9375 Turb. Cascade 1 5000 320× 192× 96 [2.7× 104, 3.2× 104]
R-Hi 0.9375 Mag. Reconnection 1 5000 320× 192× 96 [2.8× 104, 3.3× 104]

Table 2.2: Properties of the four Sgr A∗ simulations.

Model Spin Heating Ṁ/ṀEdd ΦBH/
√
Ṁc rg

H-Lo 0 Turb. Cascade 3× 10−7 5
R-Lo 0 Mag. Reconnection 7× 10−7 4
H-Hi 0.9375 Turb. Cascade 2× 10−7 6
R-Hi 0.9375 Mag. Reconnection 3× 10−7 3

step used the mean-field dynamo presented in Sądowski et al. (2015) to prevent the decay of the

axisymmetric magnetic field. After running the simulations for 2 × 104 tg in 2D, the output was

regridded into 3D, rescaling the gas density by a factor of 10 and introducing 5% perturbations in

the azimuthal three-velocity vϕ to seed departures from axisymmetry. The rescaling factor of 10

was chosen from test simulations in order to achieve the desired accretion rate (Ṁ ∼ 10−7 ṀEdd;

Marrone et al. 2007) in the 3D run. Since the level of angular momentum transport facilitated by

the self-consistent MRI turbulence is somewhat less than that supplied by the dynamo in 2D, the

accretion rate was generally lower in 3D than in 2D for the same gas density. The simulations were

evolved in 3D for another 1.5× 104 tg, with the mean-field dynamo turned off.

The results presented below correspond to a 5000 tg period for each simulation, taken from a

selected range between 2.5 × 104tg and 3.5 × 104tg (see Table 2.1 for the exact range selected for

each simulation).
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2.1.3 Radiaধve transfer

Spectra and lightcurves from the four simulations were computed using the post-processing code

HEROIC, (Zhu et al., 2015; Narayan et al., 2016). HEROIC solves for a spectrum and angular distri-

bution of radiation at each grid position self-consistently using the geodesic equation and radiative

transfer equation. This self-consistent solution allows for different geodesics to exchange intensities

from the scattering of photons by electrons. HEROIC includes synchrotron, bremsstrahlung, and in-

verse Compton scattering in its radiative transfer calculations. At the 1.3 mm observing wavelength

of the EHT, synchrotron radiation dominates the emission. To produce higher-resolution images

of the accretion flow at 1.3 mm wavelength, the ray tracing and radiative transfer code grtrans

(Dexter, 2016) was used, including only thermal synchrotron opacities.

Spectra and lightcurves were computed for several different inclination angles (10◦, 20◦, 40◦, 60◦,

80◦, and 90◦), measured down from the north pole. In computing lightcurves, both HEROIC and

grtrans use the ‘fast light’ approximation, where individual images are computed using fixed lab

frame time slices of the simulation output. In other words, the fluid is not allowed to evolve as

photons propagate in the post-processing codes.

Before running HEROIC or grtrans, the density and magnetic field strength in the simulations

were scaled (keeping the electron temperature fixed), so as to match the average observed Sgr A∗

1.3 mm flux density (≈3.5 Jy: Bower et al. 2015) at an assumed inclination of 60◦. The density

scaling factors were different for each model, ranging from 0.06 (model H-Hi) to 1.75 (model R-Lo).

Because these two-temperature GRRMHD simulations include radiation and Coulomb couplings

that are not scale-free, this procedure is not physically consistent if these couplings are dynamically

important. For Sgr A∗, Coulomb and radiation couplings do not significantly alter the gas dynamics,

so a limited amount of rescaling in post-processing should not affect the validity of these results. A
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more consistent procedure would be to identify rescaling factors and then re-run the selected part

of the simulation with the scaled primitives. This will be particularly important in higher accretion

rate systems where radiation coupling starts to become important, such as M87 (Ryan et al. 2018;

Chael et al. 2019b; 3).

Because σi can exceed unity in the jet region close to the poles, the plasma dynamics in this region

are dominated by the magnetic field. Small errors in conserving total energy in the simulation

can then lead to large errors in the fluid energy density, and hence the electron temperature.

Furthermore, the plasma density is extremely low in this region and is often determined by a

numerical floor imposed for stability. For these reasons, the innermost 4 layers of cells closest to

each polar axis were not included in the radiative transfer postprocessing. Section 3.1.3 discusses

these numerical floors and the reliability of the temperature evolution in high σi regions in more

detail, as it is a particular problem for the magnetically dominated simulations of M87 presented

in Chapter 3.

2.2 Results

2.2.1 Accreধon flow properধes

Figures 2.1, 2.2, and 2.3 show quantities averaged in azimuth and time over the 5000 tg period

selected for each simulation. Figure 2.1 displays the mass density ρ, the gas temperature Tgas, the

electron temperature Te, the ion temperature Ti, the temperature ratio Te/Ti, and the effective gas

adiabatic index, Γgas (see Equation 1.26). Figure 2.2 shows the electron heating fraction δe, the

magnetization σi, the ratio of ion thermal pressure to magnetic pressure βi, the fluid frame radiation

power per unit volume Ĝ0, and the power per unit volume produced by inverse Compton scattering

Ĝ0
IC, as calculated in KORAL using frequency-averaged quantities (Sądowski & Narayan, 2015).
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Figure 2.1: Bulk gas properties of the four Sgr A∗ simulations. From top to bottom, quantities are shown for the
spin 0 turbulent heating model H-Lo, the spin 0 reconnection model R-Lo, the spin 0.9375 turbulent heating model
H-Hi, and the spin 0.9375 reconnection model R-Hi. The fluid quantities were rescaled to produce a 230 GHz flux
density around 3.5 Jy (Bower et al., 2015) when observed at 60◦ inclination, and they were averaged in azimuth
and time for 5000 tg. The resulting averages were symmetrized over the equatorial plane. From left to right, the
quantities displayed are the density ρ in g cm−3, the gas temperature Tgas in K, the electron temperature Te in
K, the ion temperature Ti in K, the electron-to-ion temperature ratio Te/Ti, and the effective gas adiabatic index
Γgas.
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Figure 2.2: Additional azimuth and time-averaged properties of the four models of Sgr A∗. From left to right, the
quantities displayed are the electron heating fraction δe, the plasma magnetization σi, the ratio of ion thermal pres-
sure to magnetic pressure βi, the total rest frame radiation power Ĝ0 in erg s−1 cm−3, and the inverse Compton
radiation power Ĝ0

IC in the same units.
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Figure 2.3: Azimuth and time-averaged fluid properties as a function of polar angle θ at four radii. Unlike in Fig-
ures 2.1 and 2.2, these data were not symmetrized over the equatorial plane. All quantities are plotted for each
model at radii 5 rg (blue), 15 rg (green), 30 rg (red), and 50 rg (brown). From top to bottom, the quantities dis-
played are the dimensionless electron temperature Θe = kBTe/mec2, the electron heating fraction δe, the plasma
magnetization σi, and the ratio of ion thermal pressure to magnetic pressure βi.
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Figure 2.3 shows angular profiles of the dimensionless electron temperature Θe = kBTe/mec2, the

heating function δe, and the plasma parameters σi and βi, taken at three different radii. Before

averaging, the primitive quantities in each simulation were scaled so as to produce an average

230 GHz flux density of approximately 3.5 Jy. Derived quantities like the species temperatures and

radiation power were then recomputed from the scaled primitives. Temperatures and dimensionless

ratios are unchanged by this scaling, but the density and radiation power profiles are affected.

Figure 2.1 shows that all four models produce disks that are geometrically thick. All the simu-

lations were run from initial torii with almost identical initial density profiles, with only a slight

difference between the two spins considered. However, because of the rescaling required to pro-

duce a 230 GHz flux density near the measured value for Sgr A∗, the final density profiles show

significant differences among the models. In particular, because the electron temperatures in the

funnel and inner disk are cooler, the density in the low spin magnetic reconnection heating model

R-Lo had to be scaled up to produce the right 230 GHz flux density. In contrast, the high electron

temperatures in the jet/funnel region and stronger magnetic field in model H-Hi required a large

downscaling in density. These differences in density are also apparent in the average accretion rates

presented in Table 2.2; disk R-Lo has the highest accretion rate of 7× 10−7 ṀEdd, while disk H-Hi

has the lowest overall accretion rate of 2 × 10−7 ṀEdd. The accretion rates for all four models fall

within the limits for Sgr A∗ set by Faraday rotation measurements (Marrone et al., 2007).

In addition, the βi and σi distributions for the models plotted in Figures 2.2 and 2.3 show that

all four models are largely in the same regime with regards to gas pressure and magnetic field

strength, with some notable differences. All four models have low levels of magnetic flux, with

the amount of time-averaged flux threading the black hole horizon ΦBH/(Ṁc)1/2rg < 10 in all

cases. This puts these models squarely in the Standard and Normal Evolution regime of accretion

(SANE: Narayan et al., 2012), well below the flux threshold for a Magnetically Arrested Disk
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(MAD: Bisnovatyi-Kogan & Ruzmaikin, 1976; Narayan et al., 2003; Tchekhovskoy et al., 2011)

regime, where ΦBH/(Ṁc)1/2rg ≈ 50. The two low-spin models have lower field strengths, with

σi < 0.1 everywhere except extremely close to the black hole, and in both models σi falls to 10−3

past 20 rg. Both high spin models produce more field strength in the jet region, but σi always falls

rapidly with radius in the equatorial plane. Of the four models, the turbulent heating prescription

simulation at high spin, H-Hi, has the most magnetic flux. H-Hi achieves σi ∼ 1 in the jet region

close to the black hole, and it has higher values of σi (and lower values of βi) at all radii compared

to the magnetic reconnection model at the same spin. This model also launches a mildly relativistic

jet, with a bulk Lorentz factor ≈2 at large radii.

Figure 2.1 shows that the total gas temperatures are the same order of magnitude in all models.

The gas in the high-spin simulations reaches higher temperatures close to the black hole, but

comparing the heating prescriptions at fixed spin, the choice of electron heating prescription has

little effect on Tgas. In contrast, the electron and ion temperatures vary dramatically with the choice

of heating prescription. The distribution of the electron heating fraction δe in the simulations is

distinct for each heating prescription, and it shows only slight differences with spin. Because the

turbulent heating prescription deposits most of the dissipated energy into electrons at low βi, models

H-Lo and H-Hi both show higher values of δe > 0.5 in the funnel. The more magnetized jet in

model H-Hi makes this transition sharper; it results in δe ∼ 1 at low polar angles for all radii (most

easily seen in the angular profiles in Figure 2.3), while in model H-Lo, δe only approaches unity at

small radii. This distribution of δe produces electrons that are hotter in the jet/funnel, consistent

with the simulations reported by Ressler et al. (2017) and Sądowski et al. (2017). However, the

absolute temperatures seen in these models are lower than in those previous works, due to the

weaker magnetic field. In all these models, electrons are relativistic in the outflow and inner disk,

with Θe > 1 (Te > 6 × 109 K), but the electron temperatures do not reach the very high values
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Θe ∼ 100 seen in more magnetically dominated simulations.

Figure 2.1 also indicates that the temperature ratio Te/Ti takes on values between 0.05 and 3 for

the turbulent heating prescription, with an obvious structure with polar angle that transitions from

Te < Ti in the disk near the equator to Te > Ti in the outflow and jet regions where the magnetic

field strength is larger, βi is lower, and δe → 1. In contrast, the magnetic reconnection prescription

never heats the electrons more than ions. Figure 2.3 shows that in the weakly magnetized regime

explored by the reconnection models, δe varies little with polar angle and does not exceed 0.3 on

average. As a result, Te/Ti < 1 everywhere. While the magnetic reconnection fitting function does

put more heat in the electrons outside of the midplane where βi is lower, the effect is small. Te/Ti

takes on a value around 0.1 near the equator and climbs to only around 0.15 at larger polar angles.

The electron temperatures in the outer disk, relevant for free-free X-ray emission, are similar in both

models (around 109 K), despite the slightly enhanced electron heating delivered by the reconnection

model at these radii (see the 50 rg curve in Figure 2.3).

The last column of Figure 2.1 shows the effects of the electron heating on the total gas adiabatic

index (Equation 1.26). Both turbulent heating models H-Lo and H-Hi show the total gas adiabatic

index Γgas dropping to ≈1.4 in the funnel, as relativistic electrons with Γe ≈ 4/3 start to dominate

the fluid’s energy budget. However, even in the models heated by magnetic reconnection, where

electrons always have less than 50% of the total gas energy, the gas adiabatic index is not exactly

Γgas = 5/3. Out to ≈ 20 rg, the adiabatic index is closer to 1.6 than exactly 5/3, indicating the

effects of relativistic electrons in lowering the total gas adiabatic index even when they do not

constitute a majority of the fluid energy density.

As a result of the distinct electron temperature distributions that result from the two heating

prescriptions, the distributions of radiation power in Figure 2.2 are also different. In the turbu-

lent heating prescription at low spin, H-Lo, high electron temperatures in the outflow result in a
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bolometric radiation power distribution (both in synchrotron and inverse Compton) that is roughly

spherical. This spherical distribution is present both in the total radiation power Ĝ0, dominated

by synchrotron emission, and in the inverse Compton power Ĝ0
IC. In the magnetic reconnection

heating model R-Lo, electrons in the outflow are not dramatically hotter than electrons in the

disk, and because of their low density they make only a small contribution to the overall radiation

power. As a result, the distributions of synchrotron and inverse Compton power in these models are

disk-dominated. At high spin the picture remains largely the same. Hotter electron temperatures

close to the black hole cause the magnetic reconnection model R-Hi to produce a more isotropic

distribution of synchrotron power, but the contribution from the jet region is still significantly less

than in the high spin turbulent heating model, H-Hi. At both low and high spin, the distributions

of inverse Compton power show that when using the magnetic reconnection heating model (R-Lo,

R-Hi), the Compton scattering is confined to the disk, whereas with the turbulent heating model

(H-Lo, H-Hi), inverse Compton scattering produces significant power at all angles.

2.2.2 Spectra

Figure 2.4 displays the median Spectral Energy Distributions (SEDs) for all four models observed

at 60◦ inclination, with the nominal ±1σ variability around the median denoted by the shaded

region (assuming the spectral variability at each frequency is Gaussian distributed, the ±1σ band

corresponds to the 68% interval between the 15.9th percentile and the 84.1th percentile). All

models show the same characteristic features. At frequencies lower than 1011 Hz, the spectrum is

dominated by optically thick synchrotron emission from the outer disk and outflow. The spectrum

transitions to an optically thin synchrotron peak around 1012 Hz produced by emission in the inner

disk close to the black hole. An inverse Compton hump between 1014 and 1018 Hz is produced from

the Compton upscattering of NIR photons, and at X-ray frequencies the emission is dominated by
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Figure 2.4: Spectral energy distributions for the four models, calculated with HEROIC for an observer at 60◦ inclina-
tion. Spectra were computed every 10 tg over a 5000 tg period. The solid blue curve shows the median spectrum
for each model, and the shaded blue region shows the nominal 1σ time-variability if it is assumed that the variabil-
ity distribution is Gaussian at each frequency. Data points in the radio and near-infrared are taken from references
listed in Appendix A.1. Black data points show radio measurements. Green data points are near-infrared upper lim-
its, blue data points are near-infrared quiescent measurements, and red data points are near-infrared flare measure-
ments. The near-infrared spectral slope shown by the red line was taken from the flare measurement in Gillessen
et al. (2006) as νLν ∝ ν0.4. The lower shaded vertical band in the X-ray represents the range of potential X-ray
quiescent emission from the inner region of Sgr A∗, between 10% and 100% of the total observed (Baganoff et al.,
2003). The upper shaded vertical X-ray band shows the range of observed X-ray flares (Neilsen et al., 2013). From
left to right, top to bottom, spectra are shown for the spin 0 turbulent heating model H-Lo, the spin 0 magnetic
reconnection model R-Lo, the spin 0.9375 turbulent heating model R-Hi, and the spin 0.9375 reconnection model
R-Hi.
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thermal free-free emission from the hot disk at radii out to r ∼ 50 rg, peaking at 1020 Hz.

The inverse Compton humps of the turbulent heating models (H-Lo and H-Hi) are at higher

frequencies compared to the models heated by magnetic reconnection (R-Lo and R-Hi). This trend

is due to the fact that in the H models, inverse Compton emission is produced in a spherical region

around the black hole, including contributions from hotter electrons in the outflow, whereas in the

R models, inverse Compton scattering is confined to cooler electrons in the disk (see Figure 2.2).

Consequently, the inverse Compton emission in models H-Lo and H-Hi is also more variable than

in the corresponding magnetic reconnection models R-Lo and R-Hi.

All models match measurements of the high-frequency radio spectrum from optically thin syn-

chrotron between 1010.5 and 1012 Hz reasonably well. However, all models under-predict the spec-

trum at low frequencies ν < 1010.5 Hz. The relatively flat low frequency slope (Lν ∝ ν0.2) (Falcke

et al., 1998; Herrnstein et al., 2004) could be the result of an isothermal jet or outflow not captured

by the simulation (Mościbrodzka & Falcke, 2013; Ressler et al., 2017) or from emission from a pop-

ulation of high-energy nonthermal electrons (Özel et al., 2000; Yuan et al., 2003; Davelaar et al.,

2018). Model H-Hi does the best job of fitting the low frequency spectrum down to ∼1010.5 Hz,

whereas the other three models start failing to fit the data around 1011 Hz. The better performance

of model H-Hi at low frequencies may be due to the increased jet emission which dominates the

H-Hi model images at low frequencies (see Section 2.2.4).

X-ray emission is primarily produced by thermal bremsstrahlung at all radii out to r ∼ 50 rg,

the largest radius included in the radiative transfer calculations. Because all four models have

roughly similar electron temperatures ∼109 K at this radius, the strength of the free-free peak at

around 1020 Hz is thus primarily determined by the disk density around this radius, which is in

turn set by the rescaling factor chosen to match the observed 230 GHz flux density. At each spin,

because the turbulent heating models (H-Lo and H-Hi) produce higher electron temperatures in
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the inner disk and outflow, they are scaled to a lower density than the corresponding magnetic

reconnection heating models (R-Lo and R-Hi). Similarly, the high spin models produce hotter

electron temperatures close to the black hole and therefore have density scaling factors smaller

than the corresponding spin zero models, lowering their thermal free-free X-ray peaks. With the

exception of model R-Lo, all of the X-ray spectra lie below the estimated quiescent luminosity from

the inner disk, 10% of the total 2-10 keV X-ray luminosity measured by Baganoff et al. (2003). With

the addition of free-free emission outside the maximum radius of r = 50 rg used in the radiative

transfer, it is likely that model R-Lo would exceed the total luminosity measured by Baganoff et al.

(2003).

All models substantially under-predict the observed quiescent near-infrared emission (blue data

points in Figure 2.4), and the observed variability does not produce infrared flares as strong as those

observed in Sgr A∗ (the red data points in Figure 2.4). In addition, the near-infrared spectral slope

in the four thermal models is sharply negative, whereas the spectral slope measured in near-infrared

flares is positive (νLν ∝ ν0.4, Genzel et al. 2003; Gillessen et al. 2006; Hornstein et al. 2007). The

positive near-infrared spectral index suggests that flares may be produced by nonthermal electrons

which are not considered in these simulations. Ponti et al. (2017) measured the spectral index

of a single strong flare in the near-infrared and X-ray. In addition to confirming νLν ∝ ν0.4 in

near-infrared, they found a difference of ≈0.5 between the X-ray and near-infrared spectral indices,

suggestive of power-law synchrotron emission with a cooling break between the near-infrared and

X-ray.

2.2.3 Variability

Figure 2.5 shows 230 GHz (1.3 mm) light curves for all four models observed at 60◦ inclination,

and Figure 2.6 shows normalized near-infrared (2 µm) and X-ray (2 keV) lightcurves over the same
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Figure 2.5: 230 GHz lightcurves of the four models at a viewing angle of 60◦ over intervals of 5000 tg (≈27 hr).
The lightcurves were all normalized to be close to the observed average flux density of Sgr A∗ (≈3.5 Jy, Bower
et al., 2015). The dashed line shows the mean value for each lightcurve. The shaded band around the mean cor-
responds to 20% variability; this is roughly the root-mean-square variability level observed in Sgr A∗ at 230 GHz
(Marrone et al., 2008). Dotted lines denote a range of 40% variability around the mean. All models show variabil-
ity on hour time-scales. The models heated by magnetic reconnection have variability that falls within the observed
20% range, while the models heated by turbulent dissipation (H-Lo and H-Hi) have larger variability amplitudes.
Model H-Hi shows two quasi-‘flares’ around 5 hr and 10 hr that produce excursions above two times the quiescent
value.
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Figure 2.6: Normalized 2µm NIR and 2 keV X-ray lightcurves of the four models at a viewing angle of 60◦ over in-
tervals of 5000 tg (≈27 hr). The curves are normalized to their mean value over the interval. Near-infrared variabil-
ity arises in thermal synchrotron emission very close to the black hole, and the variability time-scale is shorter than
at 230 GHz. X-ray variability results from inverse Compton scattering of near-infrared photons, and is therefore cor-
related with the near-infrared variability. In model R-Lo, inverse Compton scattering occurs at lower temperatures
and does not upscatter enough photons to 2 keV to outshine the quiescent free-free emission from larger radii. In
the other models, all X-ray flaring events have a near-infrared counterpart, but some near-infrared peaks do not
get upscattered to 2 keV. These thermal simulations produce no strong X-ray flares with amplitudes >10 times
quiescence.
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time range. The turbulent heating prescription simulations (H-Lo, H-Hi) are more variable than

their magnetic reconnection counterparts at all frequencies, since more emission in these models is

produced in the high-velocity outflow region away from the equatorial plane. In contrast, emission

is mostly confined to the disk in the reconnection models (Figure 2.1). In the extreme case, the

spin zero reconnection model R-Lo produces practically no 2 keV X-ray variability, since Compton

scattering in the cool disk does not produce enough emission at this frequency to dominate over

the quiescent free-free X-ray emission from large radii (See Figure 2.4).

In all cases, the near-infrared and X-ray time variability is correlated, and the lightcurves are

more rapidly varying than the millimeter lightcurve. Consistent with past studies (Chan et al.,

2015b; Ressler et al., 2017), X-ray flaring events all have a near-infrared companion, whereas not

all of the near-infrared flares are also seen in X-rays. This observation matches one qualitative

result from observations (Yusef-Zadeh et al., 2009; Eckart et al., 2012), and it is explained in these

simulations by X-ray flares being produced by local inverse Compton scattering of near-infrared

photons generated by synchrotron emission. However, none of the X-ray flares is anywhere near as

bright as those frequently measured from Sgr A∗.

All four models fail to capture other important features of Sgr A∗’s variability. Other than a few

large spikes in the near-infrared in model H-Hi, there are no flares more than 10 times brighter than

the average, while flares up to 30 times quiescence are observed in the near-infrared (Dodds-Eden

et al., 2011; Witzel et al., 2012). These simulations furthermore do not produce any strong X-ray

flares with brightness >10 times the quiescent flux as are observed on roughly 24 hour time-scales

(Neilsen et al., 2013). As noted in Section 2.2.2, the spectral index of the near-infrared flares from

these models is negative in νLν , while the measured flare spectral index is positive and seems to be

stable over time. (Gillessen et al., 2006; Ponti et al., 2017). Furthermore, measurements of the near-

infrared and X-ray spectral indices suggest a cooling break between these bands, indicating that
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the flaring emission is synchrotron emission from a power-law nonthermal distribution (Marrone

et al., 2008; Dodds-Eden et al., 2009; Ponti et al., 2017).

The 230 GHz variability is less pronounced in all cases than the corresponding near-infrared

emission, with variability occurring on longer time-scales (≳ 1 hr). The variability amplitude

is also less than at shorter wavelengths. The models heated by magnetic reconnection (R-Lo,

R-Hi) produce less 230 GHz variability, as their emission is constrained to the less-active disk

midplane. The variability in these models falls under the roughly ∼20% intraday root-mean-square

level observed at 230 GHz (Marrone et al., 2008; Yusef-Zadeh et al., 2009; Bower et al., 2015).

In contrast, both the models heated by the turbulent heating prescription (H-Lo, H-Hi) show

significantly more variability than the 20% observed in Sgr A∗. Model H-Hi is the most variable at

230 GHz, showing two large excursions with amplitude more than 2 times the average level; these

result from sudden activity as material is ejected along the relatively powerful jet. Such dramatic

intraday 230 GHz flares have not been observed from Sgr A∗.

2.2.4 Images

Images of the four models at 60◦ inclination and 230 GHz, the observing frequency of the EHT,

are presented in Figure 2.7. In all models, the emission at 230 GHz is produced by optically thin

synchrotron. The linear scale images are similar among the models. They are brightest on the

approaching side of the disk, where emission is relativistically beamed toward the observer. The

shadow of the black hole and photon ring are visible in all four models, but slightly more emission

emerges from the disk in front of the black hole in models R-Lo and R-Hi. The insensitivity of the

appearance of the black hole shadow to the choice of electron heating prescription in these models

is encouraging for the prospects of the EHT to measure the size of the photon ring and thus test

this strong-field prediction of general relativity.
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Figure 2.7: 230 GHz (observing frequency of the EHT) snapshot images at 60◦ inclination. The top row shows
images with a linear scale, while the bottom row uses a log scale with a dynamic range of 104. The black hole
shadow is apparent in all linear scale images. In log scale, the models heated by the turbulent cascade model show
emission in the outflow/jet that is 100–1000 times fainter than the Doppler-boosted disk emission, while the mag-
netic reconnection models have all their emission confined to the disk.
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Figure 2.8: The same snapshots presented in Figure 2.7 at 43 GHz and 60◦ inclination. The top row shows images
with a linear scale and the bottom row with a log scale. At this lower frequency, the models heated by the damped
turbulent cascade prescription show a pronounced polar outflow, particularly the high spin model H-Hi, which
launches a mildly relativistic jet. The magnetic reconnection heated disks produce larger, dimmer images at this
wavelength, with emission produced only in the thick disk.
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Figure 2.9: Average image sizes as a function of wavelength for the four models at 60◦ inclination. Images were
averaged over 5000 tg and the image sizes along the major and minor axis were calculated by fitting an elliptical
Gaussian to the image Fourier transform. The major axis FWHM data are plotted in blue and the minor axis data
are plotted in red. From left to right, sizes are presented for models H-Lo, R-Lo, H-Hi, and R-Hi. The image size
grows with wavelength in all cases. In the optically thin regime at wavelengths shorter than 1.3 mm, all the models
behave similarly, with similar image sizes growing linearly with wavelength. At longer wavelengths, the models
using the turbulent heating prescription show a large anisotropy as the jet/polar outflow begins to dominate the
emission, while the models heated by magnetic reconnection remain isotropic.

10 20 30 40 50 60 70 80 90

Inclination Angle (◦)
30

35

40

45

50

55

60

65

70

75

Im
ag

e
S

iz
e

(µ
as

)

H-Lo

R-Lo

H-Hi

R-Hi

EHT E-W
measured size
EHT E-W
measured size
EHT E-W
measured size
EHT E-W
measured size

Figure 2.10: Average image sizes at 230 GHz for the four models as a function of inclination angle. Images were
averaged over 5000 tg and the image sizes in the major and minor axis were calculated by fitting an elliptical Gaus-
sian to the image Fourier transform. The image sizes are plotted as bands marking the range of values between
the fitted major axis FWHM and minor axis FWHM at each inclination angle. The range of values for the East–
West 230 GHz image size measured by the EHT (56 ± 6µas; Johnson et al., 2018) is plotted as a yellow band. In
all cases, the image size grows with decreasing inclination angle as Doppler beaming becomes less significant. All
four models satisfy the EHT constraint at a given inclination, but model R-Hi only falls within the measured range
when viewed nearly face-on.
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While the linear scale 230 GHz images are similar, the log-scale images reveal significant differ-

ences. The models heated by reconnection produce more extended disk emission, and the turbulent

cascade heated models produce faint emission in a jet at 230 GHz. Figure 2.8 shows images of

the same snapshots at 43 GHz. At this frequency, the emission is from optically thick synchrotron

and the black hole shadow is obscured in all models. The models heated by the turbulent cascade

prescription produce most of their 43 GHz emission in the jet or outflow region at large polar

angle. The high spin model H-Hi has a strong jet collimated around the polar axis, while the polar

outflow in the spin zero model is less collimated but still produces an image elongated along the

axis perpendicular to the disk.

Motivated by interferometric observations of Sgr A∗, a representative ‘size’ for each image at

various wavelengths can be computed to compare to the interferometric data from the VLBA and

EHT. Specifically, each baseline joining two sites of an interferometric array samples a visibility

Ĩ(u), given by the Fourier transform of the image I(x):

Ĩ(u) =

∫
d2x I(x) e−2πiu·x. (2.1)

In this expression, x is an angular coordinate on the image measured in radians, and u is the

baseline vector measured in units of the observing wavelength. On a short baseline that only

partially resolves the source,

Ĩ(u) ≈
∫
d2x I(x)

[
1− 2πiu · x− 2π2 (u · x)2

]
. (2.2)

The term linear in u gives a visibility phase slope with baseline length that is proportional to the

position of the image centroid. Millimeter VLBI usually lacks absolute phase referencing, so the

image centroid can be redefined to be at the origin, eliminating the linear term. Short baselines
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will then see a quadratic fall in the visibility amplitude
∣∣∣Ĩ(u)∣∣∣ with increasing baseline length. The

quadratic coefficient is proportional to the second moment of the image projected along the baseline

vector direction. Thus, the characteristic size along a specified direction corresponds to this second

moment. In general, the size is anisotropic and will be defined by a quantity analogous to the

image moment of inertia tensor. The image major and minor axis sizes are reported in terms of

the equivalent Gaussian major axis full width at half maximum (FWHM), minor axis FWHM, and

position angle (measured east of north). For example,

θmaj =

√
−2 ln(2)

π2I0
∇2

ûmaj Ĩ(u)
⌋
u=0

, (2.3)

where θmaj is the characteristic FWHM of the major axis, I0 ≡ Ĩ(0) is the total flux density of the

image, and ∇2
ûmaj is the second directional derivative along the direction of the major axis.

For each model, synchrotron images were generated with grtrans at 22, 43, 86, 240, 230, 345,

and 490 GHz, time averaged over the 5000 tg range considered for each simulation. While none

of the simulations reproduce the flat low-frequency spectrum, all the frequencies considered here

are high enough to approximately match the measured spectrum of Sgr A∗ (see Figure 2.4). The

image size and orientation were then computed according to the definition above (Equation 2.3).

Figure 2.9 shows the resulting FWHMs of the major and minor axes for the four models observed

at 60◦ inclination. In the optically thin regime at wavelengths shorter than 1.3 mm, all models

produce approximately isotropic images that grow linearly with wavelength. At longer wavelengths

in the optically thick regime, the models heated via the turbulent cascade prescription (H-Lo, H-Hi)

show a large anisotropy as the jet or polar outflow begins to dominate the emission. In contrast,

the models heated by magnetic reconnection (R-Lo, R-Hi) remain isotropic.

The transition to jet-dominated emission at low frequencies in the turbulent heating models
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results from the way the Howes (2010) prescription puts most of the dissipated energy into the

electrons in the polar regions (Figures 2.1 and 2.3). This ‘disk-jet’ structure is consistent with

the results of Ressler et al. (2017), who used the same heating prescription (in a more magnetized

system). The ‘disk-jet’ morphology has been explored in previous phenomenological models (e.g.,

Falcke & Biermann, 1995; Yuan et al., 2002) and has been applied to GRMHD simulations by set-

ting the electron temperature in post-processing (e.g., Mościbrodzka & Falcke, 2013; Mościbrodzka

et al., 2014). This structure is not present in the models heated by the magnetic reconnection

prescription, which does not deposit enough heat in the polar regions to allow the low-density fluid

there to make a substantial contribution to the emission. Instead, the 43 GHz emission in these

models is confined to the disk and the image is roughly circular when observed at 60◦. Unlike the

emergence of the black hole shadow in the optically thin synchrotron emission around 230 GHz,

the ‘disk-jet’ structure at low frequencies is not a generic prediction of all GRMHD models; it is

dependent on the choice of heating prescription.

One can compare the image size predictions from these models with interferometric measurements

of Sgr A∗ made over the same frequency range. However, these comparisons are complicated by the

effects of strong interstellar scattering for the line of sight to Sgr A∗, with angular broadening from

scattering dominating over intrinsic structure at wavelengths longer than a few millimeters. While

many authors have inferred the intrinsic size of Sgr A∗ at millimeter and centimeter wavelengths by

deconvolving these scattering effects, uncertainties in the scattering kernel render these estimates

highly uncertain (see e.g., Psaltis et al., 2015). The most secure image size estimates are those

made with the EHT at 1.3 mm, where the scattering effects are minimal, but these suffer from the

additional limitation of extremely sparse baseline coverage. While early estimates of the source

size found a FWHM of approximately 40µas from a direct Gaussian fit to the data, more recent

data have found visibility amplitudes on shorter baselines that are discrepant from this Gaussian fit
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(Johnson et al., 2015; Lu et al., 2018). The appropriate representative image size at 1.3 mm should

be estimated by taking the second moment of models that fit the short- and intermediate-baseline

data. Johnson et al. (2018) gives 50 − 62µas as a representative range of image sizes along the

East-West direction, as constrained by current EHT data.

Figure 2.10 shows average image sizes fit to the time-averaged images at 230 GHz for the four

models as a function of inclination angle. The image sizes are plotted as bands marking the range

of values between the fitted major axis FWHM and minor axis FWHM at each inclination angle.

In all model images at 1.3 mm, the image size grows with decreasing inclination angle as Doppler

beaming becomes less significant. All four models satisfy the EHT constraint for at least one

inclination angle. While models R-Lo, H-Lo, and H-Hi produce sizes consistent with observations

at inclinations higher than 45◦, model R-Hi produces the smallest images and only falls within the

measurements at nearly face-on inclination.

2.3 Discussion

2.3.1 Comparison to Ressler et al. 2017

Ressler et al. (2017) presented the first 3D GRMHD simulation of Sgr A∗ with two-temperature

electron-ion thermodynamics. They used a black hole spin of a = 0.5 and the Howes (2010) tur-

bulent cascade prescription to heat the electrons. KORAL’s simulation method used in this chapter

differs from that of Ressler et al. (2017) in some notable ways. Their work includes the anisotropic

conduction of heat along magnetic field lines, which KORAL ignores, although they report this con-

duction has little effect on the spectrum and image of Sgr A∗. On the other hand, Ressler et al.

(2017) ignore the radiative cooling of electrons and Coulomb coupling of electrons to ions, while

KORAL includes both. Again, these effects are mostly unimportant for very low accretion rate sys-
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tems like Sgr A∗. Note that radiative cooling in particular will become significant in systems with

higher accretion rates ≳ 10−6 ṀEdd like M87 (Ryan et al. 2018; Chael et al. 2019b; 3).

Notably, Ressler et al. (2017) used a fixed adiabatic index Γgas = 5/3 in evolving the total gas,

from which the dissipation is identified. In a separate post-processing step they set Γe = 4/3 in

evolving the electrons and estimating their temperature. In the trans-relativistic regime of the

accretion flow in Sgr A∗, electrons transition from non-relativistic (Θe < 1,Γe ≈ 5/3) at large

radii to relativistic (Θe > 1,Γe ≈ 4/3) at radii close to the black hole and in the outflow. As a

result, the effective adiabatic index of the total gas (Equation 1.26) will not be fixed at 5/3, even

if electrons are cooler than ions or have less than 50% of the thermal energy (see Figure 2.2).

Changes in the effective adiabatic indices in different regions of the simulation will affect the

thermodynamics and the amount of dissipation identified in the numerical evolution. For instance,

in the simple analytic shock test presented in Ressler et al. (2015), a gas with an adiabatic index

Γgas < 5/3 produces more dissipation and heats electrons to higher temperatures than if Γgas is fixed

to 5/3. This difference could be important, especially in the jet region where Γgas is well below

5/3. The different treatment of the species and total gas adiabatic indices presented in Ressler

et al. (2015, 2017) versus Sądowski et al. (2017) and the present work, and the different effects on

the amount of dissipation identified between the treatments, deserves further study, particularly in

more magnetized systems (see Section 2.3.2).

Despite the various differences in approach as described above, the picture from the low and high

spin turbulent cascade models (H-Lo, H-Hi) in the present work and the model presented in Ressler

et al. (2017) is largely consistent. All three models produce similar correlated near-infrared and X-

ray variability from synchrotron self-Compton, and all obtain a spectrum at millimeter wavelengths

that is consistent with observations. All these models show more variability at 230 GHz than the

approximately 20% observed. In the 230 GHz images, both Ressler et al. (2017) and this chapter’s
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turbulent cascade models show a pronounced photon ring and a ‘disk-jet’ structure, where lower

frequency emission is dominated by a jet or polar outflow. In this outflow, electrons are heated

to high temperatures due to the strong βi-dependence of the Howes (2010) turbulent heating

prescription.

Ressler et al. (2017) note that using the Howes (2010) turbulent heating prescription self-

consistently produces the ‘disk-jet’ morphology that had been invoked in previous studies (e.g.,

Falcke & Biermann, 1995; Yuan et al., 2002; Mościbrodzka et al., 2014; Chan et al., 2015a) to

explain the low-frequency Sgr A∗ spectrum. The main strength of these disk-jet phenomenological

models is in reproducing the radio spectrum with an isothermal jet. Earlier works have produced a

‘disk-jet’ structure by setting the electron temperature manually in post-processing. For instance,

both Mościbrodzka et al. (2014) and Chan et al. (2015a) identify ‘jet’ and ‘disk’ regions in their

single temperature GRMHD simulations based on some criteria and then apply a constant Te in

the jet and a constant ratio Te/Ti elsewhere. Although a jet is visible in images at frequencies

< 230 GHz in models heated by the Howes (2010) turbulent heating prescription, none of the

self-consistent thermodynamic models presented in Ressler et al. (2017) or the present chapter

reproduce an isothermal outflow.

This work shows that under a different physically motivated heating prescription, the disk-jet

structure vanishes, at least in the thermal emission. Thus, a ‘disk-jet’ morphology is not a guar-

anteed outcome of simulations of Sgr A∗ with self-consistent electron heating. The form of the

heating is important in determining the image shape and evolution with wavelength. Even when

the ‘disk-jet’ structure is present, it remains unclear how to provide the jet with the additional heat-

ing needed for it to remain isothermal and reproduce the observed flat radio spectrum at ν < 1011

Hz.

65



2.3.2 Disk magneধzaধon

A key difference between the spectra of the simulations presented here which use the Howes (2010)

turbulent heating prescription and the spectrum presented by Ressler et al. (2017) is that their

model produces substantially more near-infrared synchrotron emission, and meets (or even exceeds)

measurements of the quiescent near-infrared and X-ray emission. However, they consider a disk

that is substantially more magnetized. The dimensionless magnetic flux ΦBH/(Ṁc)1/2rg ≈ 40 in

their model, close to the MAD saturation value of ≈50 (Tchekhovskoy et al., 2011). In contrast,

this chapter’s models all have ΦBH/(Ṁc)1/2rg < 10 (see Table 2.2).

As a result, when compared to models H-Lo and H-Hi, Ressler et al. (2017)’s simulation has

much lower βi and a much higher σi in the outflow and close to the black hole. Whereas σi > 1

regions exist at only the innermost radii in the high spin model H-Hi, Ressler et al. (2017) find

large σi > 1 in a substantial part of the outflow close to the axis (though they exclude this region

from their radiative transfer). In their model, βi averaged over the inner 25 rg drops below 0.1 at

polar angles < 30◦ and > 150◦, while in this work there is similar behavior at 5 rg only in the

spin 0.9375 model. Consequently, the heating rate δe in their model is greater at a given radius

and polar angle than in simulations H-Lo and H-Hi. Temperatures in their model reach Θe ≈ 100,

whereas the maximum Θe in this work is 30, in model H-Hi (see Figure 2.3).

This combination of hot electrons and strong magnetic fields in the inner disk and outflow

combine to produce more near-infrared synchrotron in the Ressler et al. (2017) simulation, and

the median spectrum presented in their work goes though the measured quiescent values from

Sgr A∗. However, their simulation also fails to reproduce both the measured near-infrared flare

spectral slope (νLν ∝ ν0.3) and the large observed flare amplitudes in both the near-infrared and

X-ray. In fact, the normalized variability in their models is quite similar to model H-Lo in the
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millimeter, near-infrared, and X-ray. In the 230 GHz emission, both model H-Lo and their model

show variability amplitudes on the order of 40% relative to the mean, which is significantly larger

than the root-mean-square range of of 20% reported by Marrone et al. (2008). In the near-infrared

and X-ray, all excursions are contained within one order of magnitude from the mean and no strong

flares are generated.

When the near-infrared quiescent emission in Ressler et al. (2017)’s simulation is inverse Compton

upscattered to X-ray frequencies, it results in more quiescent X-ray emission than in any of this

chapter’s models, at the upper limit of the quiescent range of 10 – 100% of the Baganoff et al.

(2003) value. This is despite the fact that Ressler et al. (2017) do not include bremsstrahlung

emission in their radiative transfer. It seems likely that if bremsstrahlung were included, their

model would overpredict the total measured Sgr A∗ quiescent X-ray emission. As the turbulent

heating prescription puts nearly 100% of the energy into electrons in the jet and close to the black

hole, at higher disk magnetizations the gas adiabatic index Γgas will become closer to 4/3 than

5/3 in a substantial part of the accretion flow. In this regime, the self-consistent treatment of the

adiabatic index Γgas used in KORAL could become important and lead to different results for the jet

luminosity and spectrum from those reported in Ressler et al. (2017).

2.3.3 The need for a nonthermal populaধon

The four models presented in this chapter all produce spectra that match observations of Sgr A∗

at frequencies near the synchrotron peak around 1011–1012 Hz (Figure 2.4). In addition, they

all produce 230 GHz images consistent with the size measured by the EHT over some range

of inclination angle (Figure 2.10). However, none of these models reproduce the characteristic

large-amplitude X-ray flares observed ∼daily from Sgr A∗, and they all underpredict the quiescent

near-infrared emission. In addition, they do not show bright infrared flares with hard spectra, and
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they fail to reproduce the low-frequency radio spectral slope.

While an isothermal jet or outflow can fit the low-frequency radio data (Yuan et al., 2002;

Mościbrodzka et al., 2014; Chan et al., 2015a), a high-energy nonthermal electron population is

another potential solution (Özel et al., 2000; Yuan et al., 2003). Recently, Davelaar et al. (2018)

have applied a hybrid nonthermal-thermal κ distribution function in the jet in postprocessing Sgr A∗

GRMHD simulations. They show that nonthermal electrons in the jet can match both the relatively

flat low frequency spectrum and the measured near-infrared spectral index. They effectively recover

the ‘disk-jet’ model, but light up the jet with nonthermal particles instead of hot electrons at a

constant temperature.

No thermal-only model has successfully reproduced the observed infrared variability or X-ray

flares from Sgr A∗. Chan et al. (2015b), Ressler et al. (2017), and the present work all reproduce

the observed qualitative behavior whereby spikes in the X-ray always correspond to a near-infrared

event. This behavior is a natural result of synchrotron self-Compton, whereby the X-ray flares are

generated by upscattering near-infrared synchrotron photons. However, neither this chapter nor

previous works have successfully reproduced the large flare amplitudes observed in the X-ray and

near-infrared, nor the positive νLν power-law slope measured in the near-infrared (Genzel et al.,

2003; Gillessen et al., 2006; Hornstein et al., 2007). The positive spectral index is a particularly

important clue pointing toward nonthermal electrons as the source of Sgr A∗ flares, as no thermal

synchrotron model that peaks in the submillimeter can produce a positive spectral index in the

near-infrared. Furthermore, Marrone et al. (2008), Dodds-Eden et al. (2009), and Ponti et al.

(2017) report a spectral index difference of ≈ 0.5 between the X-ray and near-infrared, suggestive

of a synchrotron cooling break between the near-infrared and X-ray.

The large amplitudes of the observed near-infrared and X-ray flares again point to nonthermal

electrons. Ball et al. (2016) demonstrated that inserting localized patches of nonthermal electrons
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in post-processing can produce strong X-ray flares of greater than 10 times the quiescent value.

Li et al. (2017) used an analytic MHD model to show that magnetic reconnection of flux ropes

powering the acceleration of nonthermal electrons can reproduce the main features of near-infrared

and X-ray flares from nonthermal synchrotron radiation. Cooling nonthermal electrons in a strong

magnetic field also provides an alternative explanation to synchrotron self-Compton for both the

observed correlations between X-ray and near-infrared flares and the shorter lifetimes of the X-ray

flares (Kusunose & Takahara, 2011). To properly explore the signatures of nonthermal emission, one

should thus include nonthermal particle acceleration and self-consistent evolution in the GRMHD

simulation. The method of Chael et al. (2017) developed in Chapter 4 is well-suited to this end.

2.4 Summary and conclusions

In the four simulations considered in this chapter, the underlying heating prescription that models

the plasma microphysics around Sgr A∗ has major effects on the properties of the accretion flow,

as well as on the resulting simulated spectra and images. Under the turbulent cascade heating

prescription, even though the simulations all have a relatively weak magnetic field, electrons are

heated to very high temperatures in the funnel and are cooler in the disk. In contrast, the recon-

nection heating prescription heats electrons by nearly the same fraction everywhere (Figure 2.3).

Energy is mostly radiated from the disk in the two simulations using the reconnection heating

prescription, whereas with turbulent heating a significant amount of the radiation comes from the

jet and outflow. This is particularly true in the high spin model H-Hi, which launches a mildly

relativistic jet (Figure 2.2).

Once normalized to the 230 GHz flux density observed for Sgr A∗, the spectra of all the four

models match observations and are similar over the range 1011–1012 Hz (Figure 2.4). However, none
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of these thermal models can reproduce the low frequency radio spectrum nor the near-infrared

flux density and spectral index. While the variability from synchrotron self-Compton produces

a correlation between the near-infrared and X-ray that is qualitatively similar to the observed

behavior, there are no large near-infrared or X-ray flares (Figure 2.6). Because more of their

emission comes from the outflow and jet, the models heated by the turbulent cascade prescription

are highly variable, and exceed the 20% level of root-mean-square variability measured for Sgr A∗.

The models heated by reconnection, on the other hand, all lie within the 20% variability bands at

230 GHz (Figure 2.5).

All four models produce 230 GHz images with distinct shadows and photon rings, and all models

produce average 230 GHz images that are consistent with the size measured by the EHT over some

range of inclination. Consistent with past studies, the turbulent heating prescription simulations

produce images that are dominated by an outflow or jet at frequencies lower than 230 GHz. In

contrast, neither simulation using the magnetic reconnection heating prescription produces a jet in

the image at lower frequencies (Figures 2.8 and 2.9). Thus, while the transition of the synchrotron

emission from optically thick to optically thin and the emergence of the black hole shadow around

230 GHz is a universal feature in all models of Sgr A∗, a ‘disk-jet’ structure is not. It is sensitive

to the choice of thermal electron heating prescription.

This chapter explores only weakly magnetized disks, and further simulations must be performed

to compare different heating mechanisms in disks at or near the MAD limit. However, while

more magnetized simulations may produce higher near-infrared and X-ray quiescent flux density,

simply taking these thermal two-temperature simulation to greater magnetizations is unlikely to

produce either the correct radio or near-infrared spectral indices or strong X-ray flares. Recent

work in adding nonthermal electron distributions to GRMHD simulations in postprocessing (Ball

et al., 2016; Davelaar et al., 2018) has supported earlier analytic work (Özel et al., 2000; Yuan
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et al., 2003; Kusunose & Takahara, 2011) indicating that high-energy nonthermal populations

are necessary to solve these remaining problems in modelling Sgr A∗’s spectrum and variability.

Electron acceleration to nonthermal energies is observed in particle-in-cell simulations of trans-

relativistic reconnection (Werner et al., 2018; Ball et al., 2018). A future work will couple the

self-consistent nonthermal electron evolution method developed in Chapter 4 (Chael et al., 2017)

with physical models of relativistic, nonthermal electron acceleration to investigate the origin of

Sgr A∗’s variability and flares.
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3
Electron heating in MAD simulations

of M87

Like Sgr A∗ (Chapter 2), the core of M87 is a LLAGN with a luminosity many orders of magnitude

below the Eddington limit. Unlike Sgr A∗, the SMBH in M87 launches a relativistic jet out to

many kiloparsecs. Jets like that from M87 are likely powered by the black hole’s rotational energy,

which is extracted by ordered magnetic fields threading the black hole event horizon (Blandford &

Znajek, 1977; Tchekhovskoy et al., 2011; Zamaninasab et al., 2014). These jets have been extensively

investigated in GRMHD simulations. These simulations have demonstrated that jets powered by

the black hole spin can be launched from thick disks and accelerated to high Lorentz factors

(McKinney, 2006; Komissarov et al., 2007; McKinney & Blandford, 2009). For the specific case

of M87, Dexter et al. (2012), Mościbrodzka et al. (2016a), and Mościbrodzka et al. (2017) have

investigated the spectra and 230 GHz images predicted from various GRMHD simulations.

Recently, Ryan et al. (2018) carried out axisymmetric simulations of M87 with two-temperature

evolution and frequency-dependent radiative transport. They found that, because M87 is more

radiatively efficient than Sgr A∗, including radiation in the simulation along with the temperature

evolution of the electrons is critical. They performed simulations at both low (3.3×109M⊙; Walsh
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et al., 2013) and high (6.2×109M⊙; Gebhardt et al., 2011) values of the SMBH mass and found that

the accretion flow in the high mass, high spin case produced a 230 GHz image consistent with EHT

observations published prior to 2019 (Doeleman et al., 2012; Akiyama et al., 2015). However, their

simulations were performed with weak values of magnetic flux threading the horizon. As a result,

the jets in their simulations had a narrower opening angle than that observed in VLBI images of

M87, and the jet power was lower than the measured value by several orders of magnitude.

Magnetically Arrested Disks (MADs; Bisnovatyi-Kogan & Ruzmaikin, 1976; Narayan et al., 2003)

are accretion flows choked by magnetic pressure near the black hole. In GRMHD simulations (e.g.,

McKinney et al., 2012; Narayan et al., 2012; Sądowski et al., 2013b), MADs are seen to launch jets

with wide opening angles and large jet powers. Both of these features of MAD jets are observed

in M87; the jet power is large (∼1043 − 1044 erg s−1 ; Reynolds et al., 1996; Owen et al., 2000;

Stawarz et al., 2006; de Gasperin et al., 2012), and the jet is launched with a wide opening angle

(∼55◦ at 43 GHz ; Walker et al., 2018). A MAD model of M87 is thus an attractive target for

simulations with electron-ion thermodynamics for comparison with observational data.

This chapter presents the results of two fully 3D, two-temperature GRRMHD simulations of

Magnetically Arrested Disks around the black hole in M87 performed using the code KORAL, again

comparing the Landau-damped turbulent cascade heating prescription from Howes (2010) with the

magnetic reconnection prescription from Rowan et al. (2017). These simulations (originally pre-

sented in Chael et al. 2019b) are the first Magnetically Arrested Disks evolved with two-temperature

electron-ion thermodynamics.
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3.1 Simulaধons

3.1.1 Units

In both simulations presented in this chapter, the distance to M87 is fixed to D = 16.7 Mpc (Mei

et al., 2007), the black hole mass is 6.2 × 109M⊙ (Gebhardt et al., 2011, ,when scaled for this

distance). The dimensionless black hole spin in both simulations is set to a = 0.9375.

For this mass, the gravitational length scale of M87 is rg = GM/c2 = 9.2 × 1014 cm = 61AU.

The corresponding angular scale is rg/D = 3.7µas. The gravitational time-scale is tg = rg/c =

3× 104 s = 8.5 hr.

M87’s Eddington luminosity is LEdd = 7.8× 1047 erg s−1. The Eddington accretion rate (Equa-

tion 0.3) is ṀEdd = LEdd/ηc2 = 77M⊙ yr−1. For these simulations, the efficiency η = 0.18, as

expected for a thin accretion disk with a = 0.9375 (Novikov & Thorne, 1973).

3.1.2 Simulaধon setup

The simulations of M87 in this chapter were performed in the Kerr metric using a modified Kerr-

Schild coordinate grid that is exponential in radius and concentrates grid cells near the equator (see

Appendix B). The resolution was 288 × 224 × 128 cells in the r, θ, and ϕ directions, respectively,

which well-resolves the magnetorotational instability (MRI) that enables accretion. To capture the

evolution of the jet at large radii, the outer boundary of the simulation box is at 105 rg.

As in the simulations presented in Chapter 2, the initial equilibrium gas torii used the model of

Penna et al. (2013). To build up magnetic field to the point where the disk reaches the saturation

value of magnetic flux and becomes magnetically arrested, the initial torus was threaded with a

single weak (βmin = 100) magnetic field loop centered around r ≈ 50 rg. The initial energy in

75



electrons was set at one percent of the total gas energy, with the remainder in ions.

The simulations used outflowing boundary conditions at the inner and outer radial boundaries,

and reflecting boundary conditions were imposed at the the polar axes. In the nearest two cells

to the polar axis, the simulation controls numerical instability from fluid flow across the poles by

replacing the value of uθ with the value from the third cell at the end of each timestep.

In the jet region, high fluid velocities rapidly evacuate the funnel and cause the fluid density to

drop without bound. In order to ensure the numerical stability of the simulations in this region,

KORAL puts a global ceiling on the magnetization σi, as measured in the zero angular momentum

observer (ZAMO) frame (McKinney et al., 2012). In this frame, the fluid density is increased to

bring the magnetization back to the chosen limit, σi,max = 100.

One simulation (H10) used the Howes (2010) prescription for dividing viscous dissipation between

electrons and ions (Equation 1.33). The other simulation (R17) used the magnetic reconnection

prescription of Rowan et al. (2017) and Chael et al. (2018a) (Equation 1.37). The simulations

first ran for 104 tg in 3D. During this this time, both simulations formed a thick disk at small

radii and accumulated magnetic flux on the black hole horizon that exceeds the MAD threshold of

≈50
√
Ṁc rg (Tchekhovskoy et al., 2011; McKinney et al., 2012). At this point, to ensure the 230

GHz flux density from the models matches the 0.98±0.04 Jy of compact emission in M87 measured

by the EHT in 2009 and 2012 (Doeleman et al., 2012; Akiyama et al., 2015), the gas density was

rescaled by a factor of 1/4 and magnetic field by 1/2 (keeping the temperatures and magnetization

fixed).

At this point, the simulations were run from the rescaling point for another 1000 tg to allow the

models to settle into a new equilibrium. The results in the following Sections were taken from the

final 5000 tg, from t = 11, 000 tg to t = 16, 000 tg. The absence of large secular evolution in the

accretion rate and 230 GHz light curve as a function of time in both models (Figure 3.4) indicates
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the system has likely settled into a new equilibrium after the rescaling by t = 11, 000 tg.

In both simulations, the region of inflow equilibrium inside which the fluid quantities should be

reasonably converged is defined by finding where the characteristic accretion time tacc = 5000 tg.

At a given radius r, the accretion time-scale is (Narayan et al., 2012):

tacc =
r

|vr|
, (3.1)

where vr = ur/ut is the Boyer-Lindquist radial three-velocity.

Over the final 5000 tg period, the inflow equilibrium region in the disk extends to ≈30 rg (Fig-

ure 3.2). In the fast moving jet, the region of outflow equilibrium extends to ≈4700 rg (Figure 3.5).

3.1.3 Reliability of emission from high magneধzaধon regions

In highly magnetized regions (σi > 1), the plasma dynamics and thermodynamics in GRMHD

simulations become increasingly suspect. Because the magnetic field dominates the energy budget

in these regions, small errors in the total energy evolution can induce large changes in the internal

energy and plasma temperature. At high σi ≳ 100, these errors typically lead the code to crash, as

the implicit solver fails to converge on a solution for the internal energy density from the conserved

quantities.

As discussed in Section 3.1.2, KORAL imposes a ceiling on the magnetization σi,max = 100 to ensure

numerical stability. This ceiling results in a constant injection of gas density in the innermost jet

regions. Figure 3.1 illustrates this ceiling on σi by showing profiles of ρ and σi versus polar angle θ

in the time- and azimuth-averaged simulation data. At each radius, the density levels off at a floor

value inside the polar angle θ where σi hits the simulation ceiling σi,max = 100. This leveling off

is a numerical artifact, and therefore, radiation from these regions will be artificially intense. One
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must not include these regions where floors are active in spectra and images generated from the

simulations.

Even in regions where the magnetization is not so strong as to lead to numerical instabilities

and the imposition of the density floor, however, it remains a worrying possibility that errors in

the thermodynamic evolution may still build up to bias the simulation results. The degree of

unreliability of the radiation from the plasma temperature in these regions (100 > σi > 1) is more

difficult to assess than in the regions where the density is obviously artificially high (Figure 3.1).

This potential unreliability is a problem in all GRMHD simulations (not just two-temperature ones)

and in nearly all disk configurations (not just MADs), but it is a particularly significant concern

for the MAD simulations in this chapter.

In producing spectra and images from GRMHD simulations, it is standard practice to only

consider regions less magnetized than some cutoff value, σi < σcut. In most cases, σcut = 1 is chosen

as a conservative cutoff, eliminating all radiation from all magnetically dominated regions. For

non-MAD simulations (e.g., Ressler et al., 2015, 2017; Chael et al., 2018a; Ryan et al., 2018), this

choice is unlikely to substantially affect the results, as the emission from regions σi > 1 is not a

significant component of the spectrum (see e.g., Ressler et al., 2017, Appendix C).

In the MAD simulations considered in this chapter, however, the primary features of interest –

the jet and near-horizon region – are highly magnetized. Including at least some emission from the

σi > 1 regions may be necessary to compare these MAD simulations to observations. Consequently,

this chapter sets σcut = 25, a factor of four lower than the σi = 100 ceiling where density floors

are imposed. This choice eliminates radiation from the density floor regions where the density

is not set by mass loading from the disk, and where the thermodynamic evolution is definitely

unreliable and unstable (Figure 3.1). Section 3.2.5 explores the effects of this choice in detail. The

spectra and images from these simulations are sensitive to the choice of σcut, indicating that it
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Figure 3.1: Azimuth and time-averaged density (top) and magnetization (bottom) as a function of polar angle θ for
the two simulations at four radii: r = 5 rg (blue), r = 15 rg (green), r = 30 rg (red), and r = 50 rg (brown).
Snapshot quantities were averaged in azimuth and then time-averaged from 11, 000 − 16, 000 tg. These data were
not symmetrized over the equatorial plane. The ceiling on the magnetization σi,max = 100 (imposed in the ZAMO
frame) imprints itself as a floor on the density that takes effect at the same polar angle θ. Because the radiation
produced in this region is unreliable, regions where σi > 25 are excluded in the radiative transfer computations.
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is an important free parameter in considering emission from MAD simulations. Future work on

identifying the regions from where emission is reliable in highly-magnetized flows (as well as on

more robust methods for evolving thermodynamics in these flows) will be critical in making firm

conclusions in comparing images and spectra to data from these sources.

Finally, note that the potential unreliability of the thermodynamics outside the bulk of the disk

is not even entirely confined to high σi regions. Along the jet wall, even in regions with σi < 1, the

density gradient is large and there is an effective contact discontinuity between the funnel/“corona”

region and the disk. At this interface, the large entropy and density gradients are difficult for the

Riemann solver to handle without substantial diffusion, which leads to non-negligible, time-averaged

negative heating rates from Equation 1.30 (Ressler et al., 2017). This problem may be tractable

with extremely high resolution simulations that can resolve this interface (now potentially feasible

with GPUs, Liska et al. 2018), and with more advanced Riemann solvers than the Lax-Friedrichs

solver typically used in GRMHD codes (e.g., the Harten-Lax-van-Leer-Discontinuities solver used

in White et al., 2016).

3.1.4 Radiaধve transfer

As in the simulations of Sgr A∗ in Chapter 2, the spectra, images, and lightcurves from the M87

simulations in this chapter come from two post-processing codes, HEROIC and grtrans. Both codes

used the value σcut = 25 throughout (Section 3.1.3). Unlike in the Sgr A∗ simulations of Chapter 2,

no additional density/magnetic field rescaling was imposed in postprocessing.

The jet inclination angle of M87 is constrained from observed “super-luminal” motion of jet

components in VLBI images (Heinz & Begelman, 1997). This chapter assumes an inclination angle

of 17◦ (Mertens et al., 2016; Walker et al., 2018). This angle is measured up from the lower pole,

so that the sense of rotation of the accretion disk and black hole spin is clockwise on the sky. This
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is the preferred orientation of the jet angular momentum vector as determined by the differential

brightening and pattern velocities of the jet limbs in VLBI images (Walker et al., 2018). To match

the orientation of the M87 jet on the sky at −72◦ east of north (Reid et al., 1982), the computed

images are rotated 108◦ counterclockwise.

3.2 Results

3.2.1 Accreধon flow properধes

Figures 3.2 and 3.3 show quantities averaged in azimuth and time over the time period t =

11, 000− 16, 000 tg after rescaling the density, internal energy, and magnetic field to match the 230

GHz flux density measured by the EHT in 2009 and 2012.

Figure 3.2 shows properties related to the thermodynamics of the accretion flow: the electron

heating fraction δe, the gas temperature Tgas, the electron temperature Te, the ion temperature Ti,

and the temperature ratio Te/Ti. Figure 3.3 displays the mass density ρ, the bulk Lorentz factor

γ = u0/
√

−g00, the magnetization σi, the ratio of ion thermal pressure to magnetic pressure βi,

and the ratio of radiation pressure to gas pressure in the fluid frame βR = Ê/3p.

In each profile in Figures 3.2 and 3.3, the solid white contour shows the σi = 1 surface, while

the dotted black contour shows the surface where the Bernoulli number Be = 0.05. Expressing

Tµν in Boyer-Lindquist coordinates, the Bernoulli number is (Narayan et al., 2012; Sądowski et al.,

2013b)

Be = −T
t
t +Rt t
ρut

− 1. (3.2)

For a cold unmagnetized fluid, Be = 0.05 corresponds to a flow velocity of ≈0.3c at infinity.

From the leftmost panels of Figure 3.2, the different asymptotic behaviors of the two heating
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Figure 3.2: Time- and azimuth-averaged thermodynamic quantities from simulations H10 (top) and R17 bottom
over the period t = 11, 000 − 16, 000 tg. From left to right, the quantities shown are the electron heating fraction
δe, the combined gas temperature Tgas in K, the electron temperature Te, the ion temperature Ti, and the electron-
to-ion temperature ratio Te/Ti. The solid white contour in each panel denotes the surface where σi=1, and the
dashed black contour shows the surface where the Bernoulli parameter (Equation 3.2) Be = 0.05, which this
chapter takes as the definition of the jet-disk boundary. The solid red contour in the first column indicates the
boundary of the inflow equilibrium region, defined such that tacc = 5000 tg (Equation 3.1). The dashed white
contour in the first panel shows the σi=25 surface; this is the maximum σi included in the radiative transfer (see
Section 3.1.4).

Figure 3.3: Additional time- and azimuth-averaged properties of the two simulations. From left to right, the quanti-
ties displayed are the density ρ in g cm−3, the bulk Lorentz factor γ, the plasma magnetization σi, the ratio of ion
thermal pressure to magnetic pressure βi, and the ratio of radiation pressure to thermal pressure βR. In the first
column, white contours show the poloidal magnetic field in the averaged data.
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prescriptions introduced in Sec. 1.4 are evident in the average values of δe in the jet region. In

model H10, δe ≈ 1 everywhere inside the jet region defined by the Be = 0.05 contour. Outside the

highly magnetized funnel, δe drops to nearly zero in the outer regions of the disk, r ≳ 40 rg. In

contrast, in model R17, δe reaches its limit of equipartition of thermal energy (δe = 0.5) inside the

σi = 1 contour. In the less magnetized disk outside r ≳ 15 rg, δe falls to a small but nonzero value

δe ≈ 0.2.

While the gas temperature distribution is similar in the two models (the second column of

Figure 3.2), the different heating prescriptions result in different electron temperatures and tem-

perature ratios in the inner disk and jet. In model H10, the deposit of nearly all thermal energy

into electrons inside the jet results in high electron temperatures Te ∼ 1011 K near the black hole

that climb to Te ∼ 1012 K in the jet around 50 rg. While the temperature ratio Te/Ti is less than

unity in the regions closest to the black hole, it rises above unity by r ≈ 20 rg along the jet.

In contrast, in the magnetic reconnection heated model R17, Te/Ti < 1 everywhere. In the jet

around 30 rg from the black hole, Te/Ti ≈ 0.3, and the ratio increases with radius, reaching 0.75

around 1000 rg. In the disk, while the value of δe is higher than in the turbulent cascade heating

simulation H10, the disk temperature ratio is not substantially different, with an average value of

∼0.1 around 30 rg. This was not the case in the Sgr A∗ simulations presented in Chapter 2 (Chael

et al., 2018a), where the turbulent cascade heated simulations had lower electron temperatures in

the disk than the simulations heated by magnetic reconnection. The similarity of the outer disk

electron temperatures in the present models may arise from the increased importance of Coulomb

coupling in the denser regions of these higher accretion rate simulations (Ryan et al., 2018).

Figure 3.2 shows that, as in the simulations of Sgr A∗ in Chapter 2, the choice of electron heating

prescription has a noticeable effect on the electron-ion thermodynamics of the system. Unlike in

the low-magnetic-flux simulations considered in that work, however, the two MAD simulations
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Table 3.1: Time-averaged quantities for both M87 simulations.

Model ⟨Ṁ/ṀEdd⟩ ⟨ΦBH/(Ṁc)1/2rg⟩ ⟨PJ(100)⟩ [erg s−1] ϵJ ⟨PJ,rad(100)⟩ ϵJ,rad
H10 3.6× 10−6 55 6.6× 1042 0.5 8.8× 1042 0.7
R17 2.3× 10−6 63 1.3× 1043 1.6 1.4× 1043 1.6
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Figure 3.4: Time variability of the two MAD simulations H10 (red) and R17 (blue) plotted over the 5000 tg = 4.84

yr period from 11, 000 tg to 16, 000 tg. (Top) Mass accretion rate Ṁ/ṀEdd. Both simulations show strong vari-
ability in the accretion rate as fluid parcels slip through the magnetic-pressure-dominated region close to the black
hole horizon. (Middle) The dimensionless MAD parameter representing the amount of magnetic flux threading the
black hole. Both models are well in the MAD regime, ΦBH/

√
Ṁc rg ≳ 50 (McKinney et al., 2012), but the recon-

nection heated model R17 has a systematically higher magnetic flux on the horizon for most of the time considered
and a correspondingly lower accretion rate, which is suppressed by the additional magnetic pressure. (Bottom) 230
GHz light curves computed from high-resolution grtrans images of the two simulations.

considered here have notably different gas and radiation kinematics as well, arising from the choice of

heating prescription, even though both models produce thick (scale height-to-radius ratio h/r ≈ 0.41

at 10 rg), highly magnetized disks.

Table 3.1 summarizes important time-averaged quantities from the simulations, and Figure 3.4

shows the accretion rate, magnetic flux through the horizon, and 230 GHz flux density as a function

of time. Both simulations have a low accretion rate ∼10−6ṀEdd. Both simulations also reach the

MAD state, with the magnetic flux threading the black hole > 50
√
Ṁc rg, though R17 is slightly
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more magnetized. In both simulations, while the averaged value of the accretion rate is stable,

there are larger excursions with time than in the low-magnetic-flux simulations of Chapter 2 due

to the interaction of the accretion flow and the magnetic flux. This is particularly apparent in

simulation R17, which is more magnetized.

The high jet electron temperatures arising from the turbulent cascade heated model in simulation

H10 produce a much more intense radiation field from synchrotron and inverse Compton scattering

in the jet region than in R17. This is easily seen in the last column of Figure 3.3, which shows

the ratio of the radiation pressure to gas pressure as measured in KORAL. While this quantity is <∼1

almost everywhere in the R17 simulation, it approaches values ≳100 in the jet in model H10.

While H10 produces more powerful synchrotron and inverse Compton radiation than R17, the

optical depth to Compton scattering in both disks is low, with τIC ∼ 10−2. For the less magnetized

models of Ryan et al. (2018), in contrast, the higher densities and temperatures needed to match

the M87 spectrum with weaker magnetic fields made inverse Compton scattering more efficient,

with an optical depth τIC ∼ 0.1− 1.

The conversion of much of model H10’s energy and momentum to radiation in the inner jet has

a significant impact on its mechanical properties. While both simulations launch relativistic jets,

H10’s jet is weaker, with Lorentz factor γ ≈ 1.5 at 50 rg compared to γ ≈ 2 for R17 (Figure 3.1,

second column). Figure 3.5 shows the Lorentz factors of the two jets at large scales. By the jet

equilibrium radius around 4700 rg, H10 reaches a Lorentz factor of γ ≈ 3, while R17 reaches γ ≈ 5.

The conversion of fluid and magnetic energy into radiation also likely accounts for H10’s smaller

mean value of horizon flux ⟨ΦBH⟩ and correspondingly larger mass accretion rate Ṁ (Table 3.1).

At large radii, r > 1000 rg, the simulations resolve the jet with ≈6 cells in polar angle out to the

σi = 1 contour (white lines in Figure 3.5). Higher resolution simulations will be necessary to test

whether the observed jet opening angle in simulated images from these simulations is affected by
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Figure 3.5: Large-scale jet Lorentz factors γ from the simulations H10 (top) and R17 (bottom). The solid white con-
tour shows the surface where σi=1, and the dashed white contour shows where the Bernoulli parameter Be = 0.05.
The red contour indicates the extent of the region of inflow/outflow equilibrium, where tacc = 5000 tg (Equa-
tion 3.1). The black region along the jet axis indicates the two nearest cells to the polar axis, which are removed
from all analysis due to their boundary conditions (Section 3.1.2).

the simulation resolution. Furthermore, using reflective boundary conditions along the polar axis

(Section 3.1.2) may enlarge the jet width; tests of similar MAD jets in Cartesian coordinates (e.g.,

Porth et al., 2017) or using a misaligned grid (e.g., Liska et al., 2018) are necessary to assess the

dependence of apparent jet width on the numerical grid.

The jet power (including thermal, magnetic, and jet mechanical contributions) is (Tchekhovskoy

et al., 2011; Ryan et al., 2018)

PJ = −
∫

(T rt + ρur)
√
−g dθdϕ, (3.3)

where the integral is at a fixed r is over the jet cap, defined by the criterion Be > 0.05 (Narayan

et al., 2012; Sądowski et al., 2013b). The time-averaged jet power measured by Equation 3.3 is

roughly constant with radius from around r = 10 rg out to r = 1000 rg. The average jet powers at
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100 rg from the averaged data are 6.6 × 1042 erg s−1 for model H10 and 1.3 × 1043 erg s−1 for R17

(Table 3.1).

While the jet powers obtained from the two simulations agree to within a factor of two, the value

obtained for model R17 is more consistent with the measured values for M87 of ∼1043−1044erg s−1

(Reynolds et al., 1996; Stawarz et al., 2006). Comparing the jet power to the accretion rate gives a

jet efficiency ϵJ = PJ/Ṁc2 of 1.6 and 0.5 for R17 and H10, respectively, indicating that spin energy is

being extracted from the black hole, especially in model R17, which has greater than 100% efficiency

(Tchekhovskoy et al., 2011).

Because much of H10’s energy and momentum is converted to radiation in the jet, it has a

correspondingly lower mechanical jet power. Including radiation in the jet power measurement

gives

PJ,rad = −
∫

(T rt +Rrt − ρur)
√
−g dθ dϕ. (3.4)

Including radiation increases the measured jet powers to PJ,rad = 8.8 × 1042 erg s−1 for H10 and

PJ,rad = 1.4× 1043 erg s−1 for R17; it increases the jet efficiencies in the two models to 0.7 and 1.6,

respectively.

Much of the intense radiation in H10 is produced from regions near the σi,max = 100 ceiling.

Because mass is constantly being injected in these regions, energy and momentum are added to

the simulation and are then efficiently converted into radiation. As discussed in Section 3.1.4,

one should not trust the radiation produced in this region, and these regions are excluded in the

post-processing computation of spectra and images in the following sections. Figure 3.6 shows a

comparison of the average radiation field from the KORAL output for model R17 with the average

radiation fields computed from HEROIC, both with no σcut imposed and using σcut = 25. With no

σcut, both codes produce consistent results, with radial radiation streamlines and extremely high
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Figure 3.6: (Left) Lab frame radiation energy density and radiation flux streamlines from time- and azimuth- aver-
aged data from simulation H10. The solid contour indicates the σi = 1 surface, and the dashed contour indicates
σi = σcut = 25. (Center) the same quantities computed in the postprocessing code HEROIC, with no cut on σi
imposed. (Right) the radiation energy density and flux streamlines from HEROIC after zeroing emissivities from the
regions σi > σcut. The KORAL and HEROIC results are in good agreement when no cut on radiation from σi > 25
regions is included; both codes produce approximately radial radiation streamlines and extremely high luminosi-
ties originating from near the black hole. When the σi cut is imposed in the HEROIC post-processing, the average
energy density in radiation drops by more than a factor of 10.

energy radiation energy densities. However, when emissivities from regions with σi > 25 are zeroed

out in HEROIC (as is done to produce the spectra and images in Sections 3.2.2, 3.2.3, and 3.2.4) the

energy density of the radiation field everywhere drops by a factor of ≈50.

In the (optically thin) GRRMHD simulation itself, because the frequency-averaged radiation

field produced in σi > 25 regions spreads through the simulation volume at nearly the speed of

light, it is difficult to extract meaningful radiation quantities that are unaffected by the density

floors. For this reason, when interpreting the jet power and other quantities from these simulations,

it is important emphasize again that the results may be strongly dependent on the specific choice of

density floors and σcut. More work is needed to better understand the impact of radiation from high

σi regions on the global structure of optically thin accretion flows; future two-temperature MAD

simulations should consider not including radiation from σi > σcut regions during the simulation

run itself.
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3.2.2 Spectra

Figure 3.7 shows the spectral energy distributions (SEDs) from both simulations. These spectra

were obtained from postprocessing with HEROIC over the full 5000 tg duration of the simulation

from 11, 000-16, 000 tg, beginning 1000 tg after rescaling the density to approximately match the

compact 230 GHz flux density measured by Doeleman et al. (2012) and Akiyama et al. (2015).

Synchrotron, free-free, and inverse Compton emission are all included in the HEROIC calculations,

although free-free emission does not contribute significantly even in the X-ray. These spectra do

not include radiation produced from regions with σi > 25, and consequently the total luminosity

from the postprocessing spectra is less than that produced in the simulation bolometric Rµν . In

computing the spectra, HEROIC used data from the simulation out to 1000 rg; diffuse emission from

a good fraction of the jet is included, but the outermost regions of the jet are ignored.

SEDs from both models are largely consistent with the radio spectrum data up to the syn-

chrotron peak at 230GHz; this flat spectrum is also produced by analytic models of relativistic jets

(Blandford & Königl, 1979; Falcke & Biermann, 1995). The model spectra underpredict the total

measured flux density at frequencies < 1010 Hz; at these low frequencies, the jet on scales larger

than 1000 rg ≈ 3600µas likely makes substantial contributions to the total emission.

Neither SED matches the measured flux density at infrared through ultraviolet frequencies, al-

though the hot jet electrons in the H10 model do extend the thermal synchrotron spectrum to the

≈3 × 1013 Hz measurements by Perlman et al. (2001) and Whysong & Antonucci (2004). The

observed emission from the near-infrared to ultraviolet may be explained by the addition of a high-

energy nonthermal electron population in the disk (Broderick & Loeb, 2009) or the jet (Dexter

et al., 2012; Prieto et al., 2016).

The hotter electrons in the H10 simulation produce more inverse Compton power at X-ray fre-
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Figure 3.7: SEDs for the two models calculated with HEROIC for an observer at 17◦ inclination (Walker et al., 2018)
measured up from the simulation south pole. Spectra were computed from 3D simulation snapshots every 10 tg
over the 5000 tg period from t = 11, 000 tg to t = 16, 000 tg after rescaling the density to approximately match
the 0.98 Jy flux density of compact emission at 230 GHz (Doeleman et al., 2012; Akiyama et al., 2015). The solid
curve shows the median spectrum for each model, and the shaded region shows the nominal 1σ time-variability.
Data points are taken from Table 1 of Prieto et al. (2016) (black) and Table A.1. Measurements of the total flux
density at radio wavelengths from Table A.1 are displayed in cyan, while measurements of the compact flux density
of the core are displayed in magenta.
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quencies. Both models produce flat SEDs from Comptonization at X-ray frequencies, which roughly

match the slope of the Chandra measurements of the core of M87 (Di Matteo et al., 2003), but both

simulations underpredict the total flux density in the X-ray. However, the shape of the spectrum at

frequencies > 1012 Hz depends strongly on the choice of σcut (see Section 3.2.5). It is possible that

a two-temperature MAD simulation that can be trusted up to higher values of σi could fit all of the

spectral data up to the X-ray. Neither model’s SED extends significantly into the γ-ray, where the

observed emission may be dominated by the jet knots, such as HST-1 (Abramowski et al., 2012).

3.2.3 43 and 86 GHz images and core-shiđ

To compare the models against existing images and data from VLBI observations, grtrans images

were computed at 15, 22, 43, 86, 230, and 345 GHz. These images only include emission from

the jet out to 3000 rg. With the small inclination angle of 17◦ (Mertens et al., 2016; Walker et al.,

2018), this maximum radius corresponds to a maximum projected jet length of 850 rg, or ≈3 mas.

In contrast, jet emission in the 43 GHz VLBI image extends out to at least 20 mas (Walker et al.,

2018). For each model, a representative snapshot was chosen where the core flux density at 230

GHz was close to the measured value of 0.98 Jy from the EHT in 2009 and 2012 (Doeleman et al.,

2012; Akiyama et al., 2015).

Figure 3.8 shows log-scale images of both models at 43, 86, and 230 GHz, each with a dynamic

range of 104. The jet structure is similar in both simulations, with a wide apparent opening angle

that increases to > 90◦ at the jet base in the 230 GHz image. The jets in both models show

filamentary magnetic field structure close to the black hole that rotates clockwise as viewed from

the selected orientation. The spiral filaments are more prominent in the H10 snapshot. In general,

emission in the H10 model comes from the high-temperature, high-magnetic field inner jet, and

magnetic filaments in the jet dominate over disk emission at 230 GHz (Figure 3.14). At longer

91



43 GHz

500µas = 136 rg

86 GHz

250µas = 68 rg

230 GHz

50µas = 14 rg

500µas = 136 rg 250µas = 68 rg 50µas = 14 rg

H10

R17

Figure 3.8: Log scale images of simulation snapshots of the two models at 43 GHz (left), 86 GHz (middle) and 230
GHz (right). Snapshots were observed at an inclination angle of 17◦ up from the simulation south pole and rotated
108◦ counterclockwise to match the observed jet orientation. The intensity scale is different at each frequency,
but for each frequency the scale displays a dynamic range of 104 and is the same for both the image from the H10

simulation (top) and R17 simulation (bottom). The image length scale changes with frequency; dotted boxes on
the 43 and 86 GHz images show the fields-of-view of the 86 and 230 GHz images, respectively. The jet structure is
qualitatively similar in the two simulations, with wide apparent opening angles which narrow with distance from the
SMBH at lower frequencies. Images at all frequencies show a faint counterjet, and the black hole shadow is evident
in both models even down to 43 GHz.

wavelengths, the jet images produced from the two models are qualitatively similar. The higher

jet power in the R17 model leads to brighter emission at larger distances from the black hole at all

frequencies, while the core is consistently brighter in the H10 images.

VLBI images show that the jet of M87 is wide, with an apparent opening angle that decreases

with radius. The apparent opening angle is ≈55◦ at 43 GHz (Walker et al., 2018), increasing up to

≈127◦ in the innermost regions (∼50rg) of 86 GHz images (Kim et al., 2018). Figure 3.9 compares

the simulation images of the inner 2 mas at 43 GHz with an image of 2007 VLBA data (Walker

et al., 2018) reconstructed with a new closure phase and amplitude imaging method implemented
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in the eht-imaging software library (see Chapter 4 and Figure 9 of Chael et al. 2018b). The top

row shows the snapshot images from both simulations, and the bottom row shows the VLBI image

and the snapshot simulation images convolved with a beam that has a size half of the nominal

value reported in Walker et al. (2018). Lines indicating the 55◦ apparent opening angle measured

by ridge line analysis in Walker et al. (2018) are overlaid on all images. Previous simulations

of M87 using weakly magnetized disks produced narrow jets (Mościbrodzka et al., 2016a; Ryan

et al., 2018), with narrow opening angles <∼30◦. In contrast, the observed wide apparent opening

angle is naturally produced in these MAD simulations. The simulation images blurred to the same

resolution as the VLBI image also show limb brightening in the jet, though the contrast between

intensity on the jet edges and along the axis is in general less prominent than in the VLBI image.

The counterjet is faint but visible at the edge of the dynamic range in both model images, but it is

more prominent in the VLBI image at this epoch.

Figure 3.10 compares the simulation images at 86 GHz with the 2014 image reconstructed from

GMVA observations in Kim et al. (2018) (their figure 3, panel d). Again, both the H10 and R17

simulations produce wide opening angle jets at 86 GHz consistent with the Kim et al. (2018) image.

At these frequencies, the opening angle of R17 is slightly larger than that of H10, likely due to the

fact that this simulation is even more MAD (Table 3.1). Like the GMVA image, the 86 GHz

model images also show noticeable counterjet emission. However, the limb brighting in the blurred

simulation images is somewhat less than in the VLBI image.

VLBI observations with absolute phase referencing allow for estimates of the relative image

location at different frequencies. Because the M87 jet is optically thick at wavelengths longer than

a few millimeters, the image centroid of the bright, compact core emission moves with frequency,

giving rise to the so-called “core-shift” effect (Blandford & Königl, 1979).

Hada et al. (2011) conducted measurements of the core-shift of M87 at frequencies from 2.3 to
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Figure 3.9: Log scale 43 GHz images of snapshots from the two models overlaid with the measured 55◦ apparent
opening angle (Walker et al., 2018). The leftmost panel shows an image reconstructed from 2007 VLBA data
(Walker et al., 2018) using the eht-imaging library (Figure 9 of Chael et al., 2018b). The image is convolved with
a Gaussian beam half the size of the nominal beam reported in Walker et al. (2018). The top row shows the high-
resolution grtrans images of the two simulations at 43 GHz, and the bottom row shows the simulation images
convolved with the same beam as the 2007 reconstruction.
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Figure 3.10: Log scale images of 86 GHz snapshots of the two models overlaid with the measured 55◦ apparent
opening angle. The leftmost panel shows an image from GMVA observations reported in Kim et al. (2018). The
top row shows the high-resolution grtrans images of the two simulations at 86 GHz The bottom row shows the
simulation images convolved with the Gaussian beam reported in Kim et al. (2018).
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Figure 3.11: Frequency dependent core-shift for simulations H10 and R17 (see Section 3.2.3). The gray line and
shaded region show the best-fit model and 1σ confidence region from Hada et al. (2011) using measurements from
2 - 43 GHz (here, the central model is re-referenced to a core-shift of zero at ν → ∞). All points shown are com-
patible with the VLBI measurements over this frequency range. The extrapolated model and corresponding simula-
tion estimates at higher frequencies must be interpreted with caution because the images are no longer dominated
by a bright, optically-thick core.

43 GHz, finding that the millimeter core is coincident with the SMBH and disk that launch the

jet. They estimated that the radio core has a right ascension displacement (relative to the 43 GHz

core) given by ∆RA ≈ Aλ−αGHz + B, where A = (1.40 ± 0.16)mas, B = (−0.041 ± 0.012)mas, and

α = 0.94±0.09. The analogous core-shifts from the simulated images in this chapter were computed

by first convolving the images with the wavelength-dependent observing beam of Hada et al. (2011)

and then measuring the location of the peak in the resulting image.

Figure 3.11 shows the results of this analysis. Both H10 and R17 produce images with core-

shifts that are compatible with the results of Hada et al. (2011) at frequencies as low as 15 GHz.

Even though VLBI constrains the core-shift at yet lower frequencies, estimating core-shifts at these

frequencies is difficult, because the image sizes and observing beams below 15 GHz are comparable

to the raytracing domain used in grtrans.

Radio-jet core-shifts can be used to measure the jet magnetic field. Recently, Zamaninasab et al.
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(2014) and Zdziarski et al. (2015) used core-shifts to measure the jet magnetic fields of several

LLAGN sources (including M87) on ∼pc scales; they found their values of magnetic field and jet

powers were consistent with jets launched by MADs. This is consistent with the findings of this

chapter for M87.

The magnetic field strength in the core of M87 can also be estimated using the measured core

sizes from VLBI. Kino et al. (2014) used this method with a model of the optically thick 43 GHz

synchrotron emission to estimate a field strength 1 G <∼ |B| <∼ 15 G at an angular scale of 100µas.

Assuming an inclination angle of 17◦, an angular scale of 100µas corresponds to a de-projected

distance r ≈ 100rg. From the time- and azimuth-averaged simulation data, both models H10

and R17 have 1 G <∼ |B|100 rg <∼ 2 G, within the measured range. Closer to the black hole, Kino

et al. (2015) used EHT data to estimate a field strength 58 G <∼ |B| <∼ 127 G on scales ∼ 10µas,

corresponding to a de-projected distance of ≈10 rg. From the averaged simulation data, |B|10rg ≈

20 G at this radius in the jet. However, Kino et al. (2015) obtain their estimate by assuming a

spherical 230 GHz emission region that is optically thick to synchrotron self-absorption, which is

not observed at 230 GHz in these simulations.

3.2.4 230 GHz images

Prior to 2019, the EHT had already constrained the 1.3 mm emission size at the core of M87 to be

on the order of ∼40µas (Doeleman et al., 2012; Akiyama et al., 2015), approximately the size of

the lensed black hole shadow forM = 6.2×109M⊙ (Gebhardt et al., 2011) and D = 16.7 Mpc (Mei

et al., 2007). After the initial publication of this work in (Chael et al., 2019b), the EHT produced

the first image of the black hole shadow in M87 from observations conducted with a full array in

2017 (The Event Horizon Telescope Collaboration et al., 2019d).

Figure 3.12 compares three linear scale images at 230 GHz showing time evolution of the source
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Figure 3.12: Linear scale images of sequential snapshots at 230 GHz from the two models showing time evolution
over 20 tg ≈ 7days, the usual length of an EHT observing campaign. The top two rows show images from simu-
lation H10, and the bottom two rows show images from simulation R17. In each set of images, the top row shows
high-resolution images from grtrans, and the bottom row shows the same images blurred with a circular Gaussian
beam with a 15µas FWHM, approximately representing the imaging resolution of the EHT.
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over roughly 1 week, the usual length of observation campaigns by the EHT. In each set, the top row

shows high-resolution images from grtrans, and the bottom row shows the same images blurred

with a Gaussian beam with a 15µas full width at half maximum (FWHM). This beam size is

approximately the imaging resolution of the EHT (Chael et al., 2018b).

The 230 GHz images from both models show a distinct black hole shadow that is large enough to

be imaged by the EHT. The diameter of the shadow is approximately 9.7 rg ≈ 36µas (slightly less

than the diameter for a Schwarzschild black hole, 2
√
27rg ≈ 38µas), given the assumed mass and

distance. Because the accretion flow is not directly face-on, the bottom half of the ring structure

is brighter due to Doppler boosting of the jet and disk emission. Based on the differential limb

brightening and velocities in the large-scale jet (Walker et al., 2018), the simulations were oriented

so the jet rotates clockwise in the plane of the sky. Given the sense of rotation determined by

Walker et al. (2018) and the direction of the projected jet on the sky, the 230 GHz ring is expected

to be brighter on the bottom from Doppler boosting. This north-south asymmetry was confirmed

in the images from the full EHT in The Event Horizon Telescope Collaboration et al. (2019d).

Bright ridges tracing the rotating helical magnetic field are visible in both simulations. These

extended structures are fainter than the bright ring, but they are visible even in the images blurred

to the EHT’s resolution. The brightest spot in the 230 GHz image moves with the rotation of the

magnetic field lines, particularly in the H10 model, which lacks bright disk emission. When blurred

to the EHT’s resolution, this evolution will generally follow the clockwise sense of rotation of the

disk and jet. In the specific frames selected from the H10 simulation, however, shifts in the relative

brightness of two filaments as they rotate produce an apparent evolution in the blurred frames that

is slightly counterclockwise. The 2017 EHT observations showed time-variability in the data and

images on similar timescales, but with only four days of observation it is impossible to directly tie

the motion in EHT images of the M87 shadow (The Event Horizon Telescope Collaboration et al.,
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Figure 3.13: Comparison of visibility amplitudes from the EHT in 2009 (Doeleman et al., 2012) and 2012 (Akiyama
et al., 2015). The corresponding visibilities obtained from the fiducial 230 GHz snapshot images (Figure 3.12) for
model H10 and R17 are displayed by red and blue circles, respectively. At the chosen values of inclination θ =
17◦ and distance to the black hole D = 16.7 Mpc, the images from the simulations are somewhat too large and,
therefore, underpredict the measured visibility amplitudes on the Hawai‘i-California and Hawai‘i-Arizona baselines.
At a larger inclination angle θ = 30◦, sampled visibility amplitudes from the simulated images (denoted by red and
blue xs) better match the observations.

2019d) with rotating material in the accretion flow.

The precise shadow diameter and shape is sensitive to the inclination and black hole spin

(Bardeen et al., 1972; Chandrasekhar, 1983). Even for these simulated images that have a promi-

nent shadow, any one EHT image reconstruction would leave substantial uncertainty in the shadow

size due to the limited resolution and contributions to the source structure from the foreground

jet. It may be possible, however, to make a more precise measurement of the shadow size with

multi-epoch imaging. While the shadow is a persistent feature set only by the mass and spin of

the black hole, the foreground jet at 230 GHz rotates quickly, completing a full revolution on a

time-scale of weeks to months.

Figure 3.13 compares visibility amplitudes extracted from the fiducial 230 GHz images in Fig-

ure 3.12 with observations from the EHT with stations in Hawai‘i, California, and Arizona in 2009
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(Doeleman et al., 2012) and 2012 (Akiyama et al., 2015). The compact flux density measured in

these two years was ≈0.98 Jy. At the chosen values of inclination, θ = 17◦ up from the south

pole, and distance to the black hole D = 16.7 Mpc, the snapshot images from the simulations are

somewhat too large and underpredict the measured visibility amplitudes on the Hawai‘i-California

and Hawai‘i-Arizona baselines. Compared to the extremely compact images obtained from the less

magnetized 2D simulations in Ryan et al. (2018), the wide-opening-angle jets produce extended

emission that increases the overall image size, though the bright ∼40µas photon ring remains the

most prominent feature.

It is important to note that the image size in the simulations is highly sensitive to the assumed

viewing inclination. At larger values of inclination angle than the θ = 17◦ taken from Walker et al.

(2018), the image size decreases. While the jet inclination angle is constrained to <∼20◦ at distances

∼100pc from the black hole from apparent superluminal velocities measured near the HST-1 knot

(Giroletti et al., 2012), the inclination is not as definitively constrained on scales closer to the

black hole. In their conservative estimate, Mertens et al. (2016) give an upper limit θ <∼ 27◦. At

θ = 30◦, the visibilities from R17 nearly match the observations, and the simulated visibilities from

H10 are much less discrepant than at 17◦ (Figure 3.13). Furthermore, at this larger value of the

inclination angle, the limb-brightening in the 43 and 86 GHz images from both simulations more

closely matches the VLBI maps (left panels of Figures 3.9 and 3.10), and the counterjet is more

prominent at both frequencies.

The image size in the simulations at a fixed inclination angle is also highly sensitive to the choice

of σcut = 25 determined to avoid including emission from the regions with densities set to the floor

value. In nature, these highly magnetized regions will produce emission which may be significant

contributors to the 230 GHz flux density. Including radiation from σi > 25 regions makes the

image more compact (see Section 3.2.5). Thus, it remains possible that different prescriptions for
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Figure 3.14: Snapshot 230 GHz images of the two simulations generated using grtrans to zero out emissivities
from selected regions, highlighting the emission from different components of the accretion flow. The leftmost
column shows the image produced including all regions in the radiative transfer with σi < σcut; these are the same
images as in the middle row of Figure 3.12. The second column from the left shows the image generated from
the disk, setting emissivities in the jet regions (defined as Be > 0.05) to zero. The third column shows emission
only from the counterjet (Be > 0.05 and polar angle θ < π/2). The fourth column shows emission from only
the forward jet (Be > 0.05 and polar angle θ > π/2). Since the accretion flow is optically thin at 230 GHz, the
total flux densities of the component images nearly add up to the total flux density in the image generated from
the entire emissivity distribution. Both simulations have images that are dominated by emission originating in the
accretion flow and forward jet. H10 has more counterjet emission, and R17 has more disk emission.

including radiation in post-processing from highly magnetized regions may produce images from

MAD simulations that are consistent with the 2009 and 2012 EHT size measurements.

Figure 3.14 considers the same 230 GHz snapshots as in the central column of Figure 3.12 and

decomposes the emission into three component parts: disk, counterjet, and forward jet. As above,

regions with Be > 0.05 are defined to be in the jets, and Be ≤ 0.05 regions are in the disk. These

component images were produced by zeroing out the emissivities outside the selected regions when

doing the radiative transfer in grtrans. All the images in Figure 3.14 maintain the global cut on

emissivities from regions with σi > 25.

Because the entire M87 accretion flow is optically thin at 230 GHz, the total flux densities

of the component images in Figure 3.14 nearly add up to the total flux density in the image
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generated from the entire emissivity distribution. In both simulations, the majority (≈60%) of

the emission comes from the forward jet. The forward jet emission in both cases consists of a

spiral structure surrounding the black hole where emission traces magnetic field lines, as well as

a persistent component from the photon ring. Note that a substantial fraction of the jet emission

comes from between the Be = 0.05 and σi = 1 surfaces, so adopting σi > 1 as the definition of

the jet region results in assigning more of what is currently classified as forward jet and counterjet

emission to the disk.

In the H10 model, nearly all of the emission not from the forward jet is produced from the

counterjet, which adds to the prominent photon ring. Because the electrons in this model are so

much hotter at the base of the jet than in the disk, the emission from these regions dominates

the total, and the disk emission is negligible. In contrast, the reconnection heating model R17

has approximately equal contributions from the counterjet and disk. The disk emission shows a

persistent bright spot from the Doppler-boosted accretion flow. Unlike the bright spots produced

from rotating magnetic field lines, this spot remains constant in position and does not rotate around

the photon ring with time. This feature points to the possibility of using multi-epoch imaging with

the EHT to disentangle the source structure and identify whether or not the accretion disk emission

makes a substantial contribution to the total image flux density.

3.2.5 The effects of σcut

This section explores the effects of different choices for σcut in the results presented in the previous

sections. As discussed in Section 3.1.3, a choice of σcut is necessary in radiative transfer in order

to exclude emission from the regions that most evidently suffer from errors in the gas-dynamical

evolution. Although the ratio of electron-to-ion temperatures behaves as expected from the two

heating prescriptions in this region (Figure 3.2), the overall temperature scale from the gas evolution
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Figure 3.15: Snapshot spectra from the two simulations generated with different values of σcut in the radiative
transfer. Spectra were generated with HEROIC by zeroing out emissivities from all regions with fluid frame magne-
tization σi ≥ σcut, with σcut =1, 10, 25 (the fiducial value), 50, and with no ceiling. Because the images have
different total flux densities, the intensity scale at each σcut is different. In both simulations, any choice of σcut
above unity has little effect on the radio spectrum up to 230 GHz. Most emission in this part of the spectrum
comes from less-magnetized regions farther from the black hole. The choice of σcut has a drastic effect on the
spectrum at higher frequencies as direct synchrotron emission and Compton scattering in the most magnetized,
high-temperature regions close to the black hole is added, increasing the radiative power. When no σi ceiling is
imposed, model H17 has an extreme total luminosity > 1043 erg s−1.
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Figure 3.16: Snapshot images from the two simulations generated with different values of σcut in the radiative
transfer. From left to right, images were generated using σcut =1, 10, 25 (the fiducial value), 50, and with no
ceiling. In both simulations, the overall image structure is similar at all cuts up to σcut = 50. Because σi increases
rapidly with decreasing polar angle in the jet region (Figure 3.1), including regions of higher and higher magnetiza-
tion does not open up very different regions of the accretion flow to the radiative transfer. In contrast, including
the entire interior of the jet (the rightmost images) produces substantial new emission at and in front of the pho-
ton ring.
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may suffer from errors in any region with σi > 1. On the other hand, a value of σi > 1 may be

necessary to investigate jet emission from these simulations and compare to data.

Figure 3.15 shows spectra generated with five different values σcut =1, 10, 25 (the fiducial value),

50, and no ceiling. In both simulations, any choice of σcut > 1 has relatively little effect on the radio

spectrum up to 230 GHz. Most emission in this part of the spectrum comes from less-magnetized

material with σi < 25 farther up from the black hole. As a result, the predictions of both models

at frequencies < 230 GHz should be relatively insensitive to the choice of σcut.

For σcut = 1, both simulations are under-luminous across the radio spectrum. This change

in the luminosity with decreasing σcut from 10 to 1 indicates that the majority of the radio flux

originates in regions in the jet with 1 < σi < 10. However, this inference is dependent on the

overall normalization of the simulations chosen to match the observed 230 GHz flux density with

σcut = 25.

For ν >∼ 230 GHz, direct synchrotron emission and Compton scattering in the most magnetized,

high-temperature regions close to the black hole makes a substantial contribution to the radiative

power. The predictions of both models at these frequencies are thus strongly dependent on the

choice of the σcut, and should be viewed with caution. Although the imposition of a global ceiling

on σi < σi,max for stability when running the simulation makes it impossible to conclusively predict

the emission from the models at these higher frequencies, some trends in the spectra are with

increasing σcut in Figure 3.15 are apparent that should be explored in future work. In model R17,

the overall luminosity, peak synchrotron frequency, and Compton power all increase when adding in

increasingly magnetized regions of the simulation, but the overall spectral shape does not drastically

change. It seems possible that future simulations with a higher, more reliable absolute bound on

σi,max could extend the ceiling on σcut imposed in the radiative transfer and produce a model that

better matches the higher frequency measurements.
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In contrast, when no σcut is imposed, model H17 has an extremely large total luminosity > 1043

erg s−1, dramatically exceeding measurements at all frequencies above 230 GHz. As noted in

Section 3.2.1, this extreme luminosity affects the dynamics of the fluid, most notably by reducing

the mechanical jet power in this model relative to R17. This extreme luminosity ultimately results

from the high electron temperatures produced by δe → 1 in the most highly magnetized regions

near the black hole. However, because the density in these regions is set by the σi,max = 100

ceiling, it remains possible that a simulation using the Howes (2010) turbulent cascade heating

prescription with a higher value of σi,max and a correspondingly more evacuated jet would produce

more reasonable total radiative power.

Figure 3.16 presents 230 GHz images from the two simulations using different choices of σcut.

In both simulations, the overall image structure is similar at all cuts up to σcut = 50. Since σi

increases rapidly with polar angle in the jet region (Figure 3.1), including regions of higher and

higher magnetization does not open up very different regions of the accretion flow to radiative

transfer as long as σcut remains below the overall simulation ceiling.

The rightmost images in Figure 3.16 were produced with no σi imposed in the radiative transfer,

opening up the entire interior of the jet. Taking σcut → ∞ produces substantial new emission from

both simulations that originates from close to the black hole, dramatically increasing the brightness

and compactness of the images. In the H10 model, the forward jet compact emission is concentrated

in a bright spot in the middle of the ring from the very-high-temperature electrons at the jet base,

while in the R17 model, the highest-σi emission forms a more diffuse haze in the middle of the jet

in front of the photon ring. Furthermore, in both models, the addition of strong emission close

to the black hole dramatically increases the prominence of the lensed counterjet emission in the

photon ring, to the point where the forward jet and counterjet contributions to the 230 GHz image

become approximately equal. The strength of the emission at the base of the jet/counterjet sets the
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relative brightness of the photon ring to the surrounding disk and jet (Dexter et al., 2012), but this

emission is unfortunately unconstrained in the simulations because of the uncertainties associated

with the choice of σcut.

3.3 Discussion

The two MAD simulations presented in this paper produce spectra and images that are broadly

consistent with observations of the M87 jet at centimeter and millimeter wavelengths. Model R17

produces a jet power that is in line with observations, while model H10 produces a jet power lower

by a factor of two. Both models reproduce the wide jet opening angle observed at 43 GHz, and

they are both consistent with core-shift observations. However, at a viewing angle of 17◦, the 230

GHz images from both models are too large to match EHT observations from 2009 and 2012.

M87 has been simulated before using GRMHD and GRRMHD codes, though not as frequently as

Sgr A∗. The model of Mościbrodzka et al. (2016a) is a representative state-of-the-art combination

of single-fluid GRMHD and radiative transfer. The authors used disks with relatively weak magne-

tization from Shiokawa (2013) and added thermal electrons in post-processing that were assumed

to be hot in the jet and cool in the disk (Mościbrodzka et al., 2014). They produce a model with a

jet power in the correct range, a flat radio spectrum, and an limb-brightened jet image at 43 GHz.

The jets in their simulations show substantial variability and apparent superluminal motion from

field lines along the funnel wall. However, the jets in their simulation have apparent opening angles

at 43 GHz that are smaller than the observed ∼55◦.

As in the MAD models in this chapter, 230 GHz images from Mościbrodzka et al. (2016a) show

spiral structures from helical field lines in the jet; this is a common prediction of both weakly

magnetized and MAD models. At 230 GHz, their images are dominated by the counterjet (see also
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Dexter et al., 2012). Unlike in the MAD models presented here, their 230 GHz images satisfy the

constraints on the image size from the EHT at 20◦ inclination.

The authors have also investigated the polarized emission from their models (Mościbrodzka et al.,

2017). They have shown that in their counterjet-dominated models it is possible to produce images

with rotation measure and polarization fraction in line with observations, through the depolarization

of the counterjet emission as it passes through the cooler disc. The emission in both MAD models

at 230 GHz is dominated by the forward jet, although counterjet emission is still significant. It is

possible that, with less opportunity for depolarization through the disk, the forward-jet-dominated

images might produce a net polarized flux that exceeds the observed value (∼1%; Kuo et al. 2014).

Expanding the analysis of these simulations to polarized images is an important direction for future

work.

Recently, Ryan et al. (2018) preformed the first two-temperature simulation of M87 using the

code ebhlight in axisymmetry. Unlike KORAL, which considers only the frequency-integrated radia-

tion field, ebhlight uses a Monte Carlo method where photons with distinct frequencies are emitted

and absorbed on the simulation grid. Consequently, they obtain spectra as a natural product of

their simulations without having to perform radiative transfer in post-processing.

Ryan et al. (2018) considered disks that were far less magnetized than those explored here.

Consequently, to match the observed 230 GHz flux density they required higher accretion rates

than in these simulations. In their best-fitting model, the accretion rate is Ṁ/ṀEdd ∼ 10−6, about

three times the value from the lower-accretion-rate model H10. In all their models, they found that

Coulomb heating of electrons becomes important in the outer disk. As in this chapter, they see

that radiation plays a significant role in the inner disk. Notably, they explore simulations with

both high (Gebhardt et al., 2011) and low (Walsh et al., 2013) black hole mass and consider two

values of the black hole spin (a = 0.5 and a = 0.9375). They find their high-spin, high mass
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model produces both a spectrum and 230 GHz image consistent with the available data – this

chapter has adopted these preferred parameter values in this study. Unlike in the present chapter,

atM = 6.2×109M⊙ and a = 0.9375, they obtain a compact, counterjet-dominated 230 GHz image

that is consistent with past EHT measurements of the overall image size. However, the jet powers

produced in their simulations are several orders of magnitude too low, and their weakly magnetized

disks also produce jet opening angles that are too small when compared against VLBI observations.

These problems are not present in this chapter’s MAD models, which match the observed spectral

and image characteristics of the M87 jet well at all frequencies between 15 and 86 GHz.

Simulating the jet interior remains a problem in all simulations, not just in the MAD regime, and

all simulations must impose some sort of density floor in the magnetized, evacuated jet to ensure

numerical stability. As discussed in Section 3.2.5, this problem is particularly important in MAD

models where much of the emission may come from these highly magnetized regions. The matter

content of the jet is still unknown; it may be filled with plasma loaded from the disk or populated

by a pair plasma of electrons and positrons (Mościbrodzka et al., 2011; Broderick & Tchekhovskoy,

2015). Furthermore, it is likely that nonthermal electrons in the disk (Broderick & Loeb, 2009) or

jet (Dexter et al., 2012) contribute to the emission at 230 GHz and into the infrared, optical, and

ultraviolet. Further work with these simulations using additional postprocessing prescriptions for

the jet matter content and electron distribution may be able to provide constraints on models for

the jet interior, while still relying on predictions from self-consistent temperature evolution in the

jet wall and disk regions of the simulation.
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3.4 Summary and conclusions

This chapter presents the first Magnetically Arrested disk simulations performed with two-temperature,

radiative, general relativistic magnetohydrodynamics, previously published in Chael et al. (2019b).

After normalizing to the observed (2009 and 2012) flux density at 230 GHz, the two simulations

H10 and R17 produce spectra consistent with that of M87 in the radio, millimeter, and submillimeter.

They both produce powerful jets with jet powers consistent with or close to the measured range.

The jets both have a wide opening angle consistent with the wide opening angle of the M87 jet

observed with VLBI at 43 and 86 GHz. The simulated images at centimeter and millimeter wave-

lengths exhibit a core-shift which reproduces that reported in Hada et al. (2011). The 230 GHz

images from both simulations clearly show the lensed photon ring, i.e., the black hole shadow, indi-

cating that even in forward-jet-dominated MAD images, the full EHT should be able to image this

feature. In addition, the images are dynamic on time-scales of months to years. If these images are

reflective of M87, then repeated EHT observations should be able to detect the motion of rotating

magnetic fields that are driven by the spin of the black hole.

Two sub-grid electron heating mechanisms were considered in this chapter, and they produce jet

outflows with somewhat distinct properties. The magnetic reconnection heating model of Rowan

et al. (2017) used in simulation R17 launches a jet powered by the black hole spin with a mechanical

jet power ∼1043 erg s−1, in the correct range for M87 (Reynolds et al., 1996; Stawarz et al.,

2006). In contrast, the jet heated by the turbulent cascade model of Howes (2010) in simulation

R17 produces intense radiation at the jet base; this radiation saps the jet of mechanical energy,

resulting in a mechanical jet power a factor of two less than in R17.

Despite the differences in their kinematics, the spectra and images of the two models are quite

similar at centimeter, millimeter, and submillimeter wavelengths. The simulations did not run
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long enough to produce the full extent of the jet observed with VLBI, but the images from the

inner milliarcsecond show similar structure to VLBA and GMVA images at the corresponding

wavelengths. Notably, both models reproduce the measured ≈55◦ opening angle (Walker et al.,

2018), and both show emission from the counterjet, though the models produce less counterjet

emission than observed in some 43 GHz VLBI images.

At 230 GHz, the simulations produce images that are larger than the size measured by the

EHT in 2009 and 2012 (Doeleman et al., 2012; Akiyama et al., 2015). However, the image size is

strongly dependent on the viewing inclination, and it becomes consistent with EHT observations

around θ = 30◦, the upper end of the most conservative range established by VLBI observations

(Mertens et al., 2016). The image size also shrinks when the extremely magnetized on-axis regions

are included in the radiative transfer. In this chapter, emission from regions with a magnetization

greater than σcut = 25 is excluded from the radiative transfer. A different treatment of these regions

from a simulation with a higher overall ceiling on the magnetization could potentially bring the

size of the 230 GHz images in line with observations.

While these simulations under-produce the measured flux in the optical, ultraviolet, and X-

ray, it seems clear that the spectrum at these high frequencies is dominated by the hottest, most

magnetized regions closest to the black hole. A different treatment of the magnetization ceilings

imposed in the simulation and radiative transfer may bring the simulation spectra from these

regions more in line with observations. At the other end of the spectrum, investigating the jet on

large scales and at frequencies < 15 GHz requires a longer simulation time than considered in this

chapter.

The 230 GHz images from these simulations all show distinct black hole shadows, consistent

with the EHT’s landmark first image of M87’s horizon-scale structure in 2019 (The Event Horizon

Telescope Collaboration et al., 2019a)which are primarily illuminated by emission originating in the
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forward jet. Future investigations of polarized images from the simulations will investigate whether

these forward-jet-dominated models satisfy constraints on the 230 GHz polarization fraction; these

constraints are naturally satisfied by Faraday depolarization of counterjet emission (Mościbrodzka

et al., 2017). Furthermore, the rotation of the accretion disk and jet makes the 230 GHz images

dynamic on time-scales of weeks to months. It may be possible to distinguish between models

with polarimetric EHT images and by tracking stationary and moving features through repeated

observations.
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4
Nonthermal particle evolution in

accretion simulations

Chapter 1 presented a method for evolving separate thermal populations of electrons and ions in

global accretion flow simulations; Chapters 2 and 3 applied this method to simulations of Sgr A∗

and M87 and compared the results with observational data from both systems. However, at the

lowest densities in the accretion flows around Sgr A∗ and M87, collisions will not completely relax

the electron distribution function to a local Maxwellian (Mahadevan & Quataert, 1997). Even

if the bulk of the electron distribution function is thermal, processes like shocks and magnetic

reconnection (e.g., Sironi & Spitkovsky, 2011, 2014) can accelerate a small fraction of the electrons

into a relativistic nonthermal distribution, which will persist for a long time because of the lack

of collisions. In the specific case of Sgr A∗, while traditional ADAF models emitting via thermal

synchrotron radiation can describe the bulk of the emission from the ‘submm bump’ around 1012

Hz (Narayan & Yi, 1995b; Narayan et al., 1998; Quataert & Narayan, 1999), the quiescent infrared

and unresolved X-ray emission in the spectrum are most easily explained with hybrid models that

include a small population of high-energy, power-law electrons (Özel et al., 2000; Yuan et al.,

2003, 2004; Broderick & Loeb, 2006). In addition, Sgr A∗ flares continually in the millimeter,
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near-infrared (NIR), and X-ray (Genzel et al., 2003; Yusef-Zadeh et al., 2006; Neilsen et al., 2013;

Zhang et al., 2017). The infrared and X-ray flares are correlated, and the spectrum of strong flares

shows a stable spectral index and a cooling break indicative of nonthermal synchrotron radiation

(Gillessen et al., 2006; Ponti et al., 2017). In 2018, spatially resolved observations of NIR flares

by the GRAVITY interferometer revealed circular motion (GRAVITY Collaboration et al., 2018b),

indicating that the compact flares may originate in “hot spots” of plasma orbiting near the black

hole’s innermost stable circular orbit (Broderick & Loeb, 2006).

Most GRMHD simulations are post-processed assuming emission only originates from thermal

electrons, but some recent investigations have added a population of electrons with power-law

distributions during post-processing to investigate the effect on the quiescent spectrum and sub-

mm image size of Sgr A* (Mao et al., 2016; Davelaar et al., 2018). Adding nonthermal electrons

in post-processing to single-fluid GRMHD simulations, Ball et al. (2016) successfully reproduced

strong flare amplitudes, suggesting that the rapid and localized injection of broad nonthermal,

power-law electron distributions can efficiently generate flares in these systems.

This chapter outlines the next, logical step from the thermal, two-temperature simulations con-

sidered in Chapters 1– 3. Namely, in addition to evolving thermal ions, thermal electrons and

radiation in a GRRMHD simulation, this method evolves a locally isotropic population of nonther-

mal electrons. The exchange of energy and momentum among the various particle populations and

the radiation field is accounted for at each time step during the global evolution. The nonthermal

electrons are heated by a prescribed fraction of the total viscous heating rate; they further gain and

lose energy by adiabatic compression and expansion, Coulomb coupling, inverse Compton scatter-

ing, and radiative cooling. Like the thermal, two temperature method used in Chapters 1– 3, this

new algorithm (originally presented in Chael et al. 2019b) is implemented in the GRRMHD code

KORAL.
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Section 4.1 presents the additional equations and physics added to the simulation procedure

described in Chapter 1 to evolve a nonthermal population of electrons in the presence of radiation,

and section 4.2 describes the numerical algorithm used in KORAL. Section 4.3 discusses a number of

simple test problems used to validate the code, and Section 4.4 presents initial results of a 2D toy

simulation of a Sgr A∗-like accretion flow including nonthermal electrons. Section 4.5 discusses the

next steps necessary to use the algorithm developed in this Chapter in realistic, 3D simulations of

Sgr A∗ to investigate the physical origin of its variability and high-energy flares.

4.1 Physics

4.1.1 Fluid populaধons

As introduced in Chapter 1, GRMHD simulations typically track a single magnetized perfect fluid

as a function of position and time described by the gas density ρ, internal energy density u, four-

velocity uµ, and magnetic field four-vector bµ.

In this chapter, the fluid is expanded to three populations: thermal ions, thermal electrons, and

an isotropic distribution of nonthermal electrons. All three populations are assumed to move with

the same velocity uµ. This assumption automatically preserves local charge neutrality and simplifies

the evolution equations for the nonthermal spectrum (Section 4.1.3). Under this approximation,

Equation 1.3 remains a valid description of the total stress-energy, although the equation of state

relating p and u changes as explained below.

The electrons contribute negligibly to the mass density, ρ = mpni.. Charge neutrality enforces

the constraint:

ne th + ne nth = ni = ρ/mp, (4.1)

115



where ne th, and ne nth are the number densities of the thermal and nonthermal electrons, respec-

tively.1

All three fluid populations can have substantial contributions to the net energy density and

pressure of the fluid:

u = ui + ue th + ue nth,

p = pi + pe th + pe nth. (4.2)

The energy densities and pressures of the thermal species are determined by their respective tem-

peratures Ti,e and corresponding adiabatic indices Γi,e (Θi,e), which are functions of temperature

through the dimensionless temperature Θi,e = kBTi,e/mi,ec2 (Equation 1.23).

The nonthermal electrons are assumed to be isotropic in the fluid rest frame, with a distribution

n(γ) in Lorentz factor γ, sampled over a large range from a minimum γmin to a maximum γmax.

The number density, energy density, and pressure of the nonthermal electrons are then given by

integrals over the distribution n(γ),

ne nth =

∫ γmax

γmin
n(γ) dγ, (4.3)

ue nth = mec2
∫ γmax

γmin
n(γ)(γ − 1) dγ, (4.4)

pe nth =
mec2

3

∫ γmax

γmin
n(γ)(γ − γ−1)dγ, (4.5)

where me is the electron mass.2

1As in Chapter 1, the procedure laid out in this Section assumes the plasma is pure ionized Hydrogen.
2Themec2(γ−γ−1)/3 factor in the integrand for the pressure pe nth is just p2/3E, where p2 = mec2(γ2−1)

is the square of the particle momentum, E = γmec2 is the particle energy, and the 1/E factor comes from
the relativistically invariant measure d3p/E.
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The net adiabatic index of the combined three-species fluid with a nonthermal contribution is

Γgas = 1 +
p

u
= 1 +

pi + pe th + pe nth
ui + ue th + ue nth

, (4.6)

using Equation 1.23 for the thermal quantities and Equations 4.4 and 4.5 for the nonthermal energy

density and pressure.

In addition to the three particle populations, KORAL evolves an additional fluid to represent

radiation using the M1 closure scheme, described by the energy density Ē in the radiation frame,

the photon number n̄R, and the radiation frame four velocity uµR ̸= uµ (Equations 1.7 – 1.8).3

4.1.2 Updated GRRMHD equaধons

The conservation equations that govern the evolution of the total fluid stress-energy Tµν , electro-

magnetic field tensor F ∗µν , and radiation field stress-energy Rµν are unchanged by the addition

of nonthermal electrons (Equations 1.9–1.12). However, Gν , the four-force density that couples

the evolution of the radiation and gas, is modified by radiation from nonthermal electrons. The

nonthermal electrons, like those in the thermal population, are assumed to radiate isotropically in

the fluid rest frame. Thus, Equations 1.14– 1.15 now become

Ĝ 0 = ρ̃ (κP,aÊ − 4πκP,eB̂) + Ĝ0
IC th + Ĝ0

nth, (4.7)

Ĝ i = (ρ̃κR + ρκes)F̂ i. (4.8)

As in Chapter 1, the κ factors are the grey, frequency-averaged opacities for the thermal radia-

tive processes, Ĝ0
IC th is the thermal energy loss from inverse Compton scattering (Sądowski &

3As in Chapter 1, quantities in the radiation rest frame are denoted with bars, and quantities in the fluid
frame are denoted with hats.
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Narayan, 2015), F̂ i is the rest-frame radiation momentum flux (F̂ i = R̂0 i), and B̂ = σT 4
e /π is the

electron blackbody radiance. The new factors in Equations 4.7–4.8 are Ĝ0
nth, the energy loss to

radiation from the nonthermal population, and ρ̃, the reduced fluid density when accounting for

the nonthermal population:

ρ̃ = ρ
ne th

ne th + ne nth
. (4.9)

The factors κP,eÊ, 4πκP,aB̂, and κRF̂ i account for emission and absorption from only the thermal

electrons, so they are multiplied by ρ̃ instead of ρ. The full density ρ is used in the term for the

electron scattering opacity (Equation 1.16), since nonthermal electrons also scatter the emission.

Neglecting absorption from the nonthermal electrons in the rest frame, the nonthermal popula-

tion only contributes an emission factor Ĝ0
nth. The contribution to the radiative power from the

nonthermal electrons is the integral of the radiative cooling rate over the full distribution n(γ),

Ĝ0
nth = mec2

∫ γmax

γmin
n(γ)γ̇rad dγ. (4.10)

The quantity γ̇rad represents the cooling rate of a single electron with energy γmec2 from radia-

tive processes in the fluid rest frame; it is always negative. The total radiative cooling rate has

contributions from synchrotron, bremsstrahlung, and inverse Compton scattering:

γ̇rad = γ̇syn + γ̇brem + γ̇IC, (4.11)

where γ̇syn, γ̇brem, γ̇IC are given by Equations (4.19, 4.20, 4.21), respectively. Absorption by the

nonthermal population is not included in Gν .

The addition of nonthermal electrons also modifies the source term in the photon number evolu-
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tion Equation 1.13. This frame invariant term, ˆ̇nR, becomes (c.f. Equation 1.17):

ˆ̇nR = ˆ̇nsyn + ˆ̇nbrem th + ˆ̇nbrem nth − ρ̃κn,an̂R. (4.12)

The first term in Equation 4.12 from synchrotron emission of both thermal and nonthermal electrons

is unchanged from the original expression (Equation 1.18) because the number of photons emitted

in synchrotron is independent of the energy of the emitting particle. The second term is the

production of photons from thermal bremsstrahlung emission, and the last term is the photon loss

rate from absorption by the thermal electrons (see Sądowski & Narayan 2015; Sądowski et al. 2017).

These terms are only modified by a factor ρ̃/ρ. The new, third term gives the corresponding rate

of photon emission by bremsstrahlung from the nonthermal distribution. For an electron at γ,

the bremsstrahlung photon production can be approximated by assuming that photons are only

produced with energy hν = γmec2, or

ˆ̇nbrem nth =

∫ γmax

γmin

γ̇brem
γ

n(γ)dγ. (4.13)

4.1.3 The nonthermal distribuধon evoluধon equaধon

The evolution equation for the nonthermal distribution can be derived by taking angular moments of

the relativistic Boltzmann equation and imposing the requirement that the distribution be isotropic

in the fluid rest frame (Lindquist, 1966; Webb, 1985, 1989). The isotropy assumption truncates

the hierarchy of moment equations and leaves a single equation:

[n(γ)uα];α = − ∂

∂γ
[γ̇totn(γ)] +QI(γ), (4.14)

γ̇tot = γ̇adiab + γ̇C + γ̇rad. (4.15)
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Aside from the injection (source) term QI(γ), Equation 4.14 is essentially a conservation equation in

five dimensions: four dimensions correspond to space and time (left-hand side of Equation 4.14), and

the fifth dimension corresponds to the fluid frame particle Lorentz factor γ, through which particles

move with velocity γ̇tot. This velocity is broken into three parts: γ̇adiab from adiabatic heating and

cooling due to gas compression and expansion, γ̇C from cooling due to the (weak) Coulomb coupling

with the thermal electrons, and γ̇rad from the energy lost to radiation (Equation 4.11). Since

nonthermal electrons are assumed in this chapter to only emit and never absorb photons, γ̇rad is

always negative; furthermore, the Coulomb coupling term γ̇C is also negative, since the nonthermal

population by assumption consists of particles more energetic than the thermal electrons that they

couple to.

The adiabatic ‘cooling’ rate γ̇adiab can be positive or negative, depending on whether the gas

is compressing or expanding. This term can be derived from the relativistic Boltzmann equation

without interaction terms (Webb, 1989):

γ̇adiab = −1

3
uα;α(γ − γ−1). (4.16)

It is negative when the gas expands, (uα;α > 0), and it is positive when the gas is compressed

(uα;α < 0).

The term QI(γ) in Equation 4.14 is the rate of injection of high energy electrons from the thermal

to the nonthermal distribution at a given γ. In principle, QI(γ) is a function of local conditions and

depends on microscopic plasma processes that accelerate electrons into the nonthermal distribution.

For simplicity, this chapter assumes that the electrons are injected with a power-law distribution

with index p,

QI(γ) = Cγ−p, (4.17)
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where C is a normalization factor. In addition, this chapter assumes the total injection rate in

nonthermal injection function QI is equal to a fraction δnth of the total dissipation rate qv at a

given location and time. That is, given the total viscous heating rate qv, computed numerically

from the simulation (see Equation 4.32), a fraction δe of the energy goes to the electrons, of which

a fraction δnth goes into the nonthermal population. This assumption determines the normalization

C in Equation 4.17 by relating

mec2
∫ γinj max

γinj min
(γ − 1)QI(γ)dγ = δnth δe qv

C =
δnth δe qv

mec2

[∫ γinj max

γinj min
(γ − 1)γ−p dγ

]−1

(4.18)

Apart from γ̇adiab, the model includes additional cooling rates, γ̇ syn, γ̇brem, γ̇ IC, γ̇C, for syn-

chrotron, bremsstrahlung, inverse Compton scattering, and Coulomb coupling. The expressions

for these factors implemented in KORAL are taken from Manolakou et al. (2007) and Ginzburg &

Syrovatskii (1964), valid in the relativistic limit (γ > 1),

γ̇ syn = −1.292× 10−11

(
B

1G

)2

γ2 s−1, (4.19)

γ̇brem = −1.37× 10−16
( ni
1 cm−3

)
γ (ln γ + 0.36) s−1, (4.20)

γ̇ IC = −3.25× 10−8

(
Ê

1 erg cm−3

)
γ2 FKN(γ) s−1, (4.21)

γ̇C = −1.491× 10−14
( ne th
1 cm−3

) [
ln γ + ln

( ne th
1 cm−3

)
+ 74.7

]
s−1. (4.22)

The inverse Compton cooling rate γ̇IC includes a dimensionless Klein-Nishina factor FKN which

reduces the cooling rate at high γ. For a thermal distribution of photons at temperature TR, this
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factor is (Manolakou et al., 2007; Moderski et al., 2005)

FKN(γ) =
(
1 + 11.2γ

kBTR
mec2

)−3/2

. (4.23)

4.1.4 Thermal parধcle evoluধon, revisited

The evolution of the thermal ions and electrons is handled the same was as introduced in Chap-

ter 1, Equations 1.28–1.29, but with additional terms added to describe the new interactions with

nonthermal electrons. For both species, the thermal entropy per particle (se, si) evolves according

to the first law of thermodynamics with source terms:

Te(ne thseuµ);µ = δe(1− δnth)q
v + qC

th + Ĝ0
th (4.24)

+ qCnth +
(
qcool − µṅcool

)
,

Ti(nisiuµ);µ = (1− δe)qv − qC
th. (4.25)

As in the original, thermal-only Equations 1.28 and 1.29, the first term on the right-hand side in

both Equations 4.24,4.25 represents the viscous heating of the thermal populations. As before, the

total viscous heating rate qv is identified numerically, modifying Equation 1.30 to account for the

adiabatic heating and cooling of the nonthermal electrons (Equation 4.32). The fraction of the

viscous heating that goes to the thermal ions is (1− δe), and the fraction that goes into thermal

electrons is (1− δnth) δe.

The second term in Equations 4.24,4.25 is the thermal Coulomb coupling qC
th between the thermal

electron and ion populations (Stepney & Guilbert, 1983). The third term in the electron entropy

equation is the net radiative power from emission and absorption by the thermal electrons, Ĝ0
th

(Equation 4.7).
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The nonthermal population also modifies the electron entropy evolution through a Coulomb

coupling term qC
nth, which is the total energy gained by the thermal electrons due to the Coulomb

cooling of the high-energy particles:

qC
nth = −mec2

∫ γmax

γmin
n(γ)γ̇C dγ. (4.26)

Finally, in order to conserve the total number of electrons, when nonthermal electrons cool below

γmin, they are treated as thermalized and rejoin the thermal distribution. These cooling electrons

join the thermal distribution at a rate ṅcool, carrying energy density flux qcool. The energy and

particle cooling rates from the nonthermal distribution to the thermal distribution are simply the

flux of energy and particles at the boundary γmin:

ṅcool = − [γ̇totn(γ)]γmin ,

qcool = − [meγ̇tot(γ − 1)n(γ)]γmin . (4.27)

Note that during adiabatic compression, there can be a (small) flux out of the nonthermal

distribution at the top end, γmax. KORAL treats this flux identically to Equation 4.27, adding back

the energy and particle number lost over this edge to the local thermal bath. This treatment is

unphysical but necessary to conserve total energy among the three species in the simulation. Since

the total amount of viscous heating is not increased by this procedure (see Equation 4.32), this

choice will not increase the temperature of the thermal electron population above what it would be

in a simulation without any nonthermal electrons. In any case, due to the steep power-law shape of

the injection functions considered in this study (Equation 4.17), the outward flux at γmax is always

extremely small.

The expression µṅcool, where µ is the chemical potential, accounts for the increase in entropy from
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the increase in particle number density. For the chemical potential µ, KORAL uses the following ex-

pression derived from the approximate form of the electron entropy per particle se (Equation 1.24):

µ = mec2
[
1− 3

5
ln
(
1 +

5

2
Θe

)
+Θe

(
4− 3

2
ln
(
Θ2

e +
2

5
Θe

)
+ lnne th

)]
. (4.28)

4.2 Numerical method

The equations in Section 4.1 are implemented in the GRRMHD code KORAL (Sądowski et al., 2013a,

2014, 2017). The nonthermal electron distribution n(γ) is sampled in N equally spaced logarithmic

bins over a range [γmin, γmax]. These quantities n(γj) are treated as N additional primitive quantities

evolved in parallel with the other GRRMHD and thermodynamic primitives. The full vector of

15+N primitives P consists of the fluid density ρ, energy density u, fluid velocity ui, magnetic field

Bi, radiation energy density Ē, radiation frame velocity uiR, photon number n̄R, thermal electron

and ion entropy densities sene th and sini, and the populations n(γj) of the nonthermal electrons in

the N bins:

P = [ρ, u, ui, Bi, Ē, uiR, n̄R, sene th, sini, n(γj)], (4.29)

where the index j runs over the N bins sampled in γ-space. The corresponding conserved quantities

are

U = [ρu0, T 0
0 + ρu0, T 0

i, B
i, R0

0, R
0
i, nRu0R,

sene thu
0, siniu

0, n(γj)u
0]. (4.30)
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KORAL uses a Newton-Raphson solver to convert from the conserved quantities to primitives (Są-

dowski et al., 2013a, 2014). The fluid velocity uµ is uniquely specified by inverting the MHD

conserved quantities, so recovering n(γj) requires simply dividing the conserved quantity n(γj)u0

by the already-solved-for u0.

Fixed floors and ceilings are applied on the evolved quantities as in Sądowski et al. (2013a, 2014,

2017). The floor on the nonthermal distribution is n(γj) > 0 at all γj . This floor is especially

necessary when beginning from n(γj) = 0, as numerical effects can occasionally make qv negative

and bring the nonthermal number values below zero. Fixed ceilings also prevent the nonthermal

number and energy densities from exceeding 50% of the total.

KORAL uses a second-order Runge-Kutta scheme to advance the fluid quantities in each time

step. Within each Runge-Kutta step, there are three main sub-steps: explicit fluid evolution

(Section 4.2.1), nonthermal adiabatic evolution and viscous heating (Section 4.2.2), and implicit

radiation coupling (Section 4.2.3).

4.2.1 Explicit fluid evoluধon

In the explicit sub-step, the covariant conservation equations are evolved without source terms.

The conservation equations evolved in this step consist of the GRRMHD equations (1.9–1.12), the

photon number equation 1.13, the thermal entropy equation 4.24, and the nonthermal advection

equation 4.14, all with their right hand sides set to zero. In particular, the nonthermal bins at

each point in γ-space are treated independently and evolved as scalars with the fluid flow. The

explicit evolution uses a Lax-Friedrichs method with van-Leer flux limiters to calculate fluxes of the

conserved quantities at cell faces. Geometrical terms (i.e. the covariant derivative terms involving

Christoffel symbols) are added as source terms at cell centers. The full explicit advective algorithm

is described in Chapter 1, and Sądowski et al. (2013a, 2014).
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4.2.2 Adiabaধc nonthermal evoluধon and viscous heaধng

After evolving the bulk fluid quantities explicitly, the nonthermal distribution in each cell is evolved

adiabatically through γ-space to provide the appropriate heating or cooling from gas compression

or expansion. Then the dissipative heating is calculated and and applied to the thermal and

nonthermal species using the viscous heating prescription (Equation 4.32). The steps are as follows:

1. The nonthermal distribution is evolved under adiabatic compression/expansion using the
cooling rate γ̇adiab in Equation 4.16. From Equation 4.14, after explicit spatial evolution and
before dealing with radiative and Coulomb coupling, the change in the nonthermal electron
spectrum n(γj) over a proper time interval ∆τ at each bin j in γ-space is

∆n(γj) = ∆τ

(
uα;α
3

)[
∂

∂γ

(
(γ − γ−1)n(γ)

)]
j

. (4.31)

The expansion parameter uα;α is computed from the uα obtained at the end of the explicit
operator. For numerical stability, the derivative ∂/∂γ is approximated using explicit upwind
finite differencing. The upwind direction depends on the sign of the expansion.

Because the upwind evolution in Equation 4.31 conserves total particle number but not energy,
the spectrum ∆n(γ) of particles added or subtracted to the distribution is scaled so that the
total change in energy is equal to the amount predicted by Equation 4.33 (see Section 4.2.4).

2. If the expansion uα;α > 0, nonthermal electrons may escape out of the lowest bin of the
distribution. The loss of energy and particles out of the lowest bin is calculated and added
to the thermal distribution number and energy density. Similarly, if uα;α < 0, nonthermal
electrons may escape out of the highest bin, and the corresponding flux of energy and number
density is added to the thermal distribution. The thermal electron entropy per particle se is
recomputed using the updated number and energy density.

3. Since each species has now gone through its full adiabatic evolution, the viscous dissipation
rate qv in each cell is computed by comparing the total fluid energy density after the explicit
step with the sum of the current species energies (Sądowski et al., 2017),

qv =
1

∆τ
(u− ui th adiab − ue th adiab − ue nth adiab) . (4.32)

Here, u is the internal energy density of the total gas after the explicit step over a fluid frame
proper time step ∆τ . ui th adiab, ue th adiab, and ue nth adiab are the internal energy densities
carried by thermal ions, electrons, and nonthermal electrons after adiabatic evolution. The
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difference between u and the sum of the adiabatically evolved species energy densities gives
the total energy gained from viscous dissipation during the time step.

4. The fraction of the viscous heating applied to the electrons δe, and the fraction of that applied
to the nonthermal population δnth are calculated depending on the subgrid prescription used.

5. Particles are added to the nonthermal population in a power-law distribution by adding the
injection distribution QI(γ)∆τ (Equation 4.17) to each bin.

6. The thermal energy densities ue th and ui are increased by their fraction of the remaining
viscous heating. The corresponding changes in thermal entropies se and si are computed by
Equations (1.23–1.24).

4.2.3 Implicit radiaধon and Coulomb coupling

The source terms representing the radiative and Coulomb coupling between the species are: the

radiative coupling Gν , the thermal Coulomb coupling qCth, the photon source term ṅR, the nonther-

mal cooling rates γ̇, the nonthermal Coulomb coupling qCnth, and the cooling from the nonthermal

population to the thermal bath, qcool and µṅcool. These coupling terms in Equations 1.9, 4.14, 4.24

and are applied through a semi-implicit operator using the methods described in Sądowski et al.

(2013a, 2014).

The implicit solver uses a reduced set of primitives which includes the energy density and ve-

locity of either gas or radiation, the photon number density, electron energy density, and the full

nonthermal distribution. The other primitives, including the velocity not evolved, the gas density,

and the ion entropy are continually updated during the iterations of the implicit solver to enforce

the conservation of total energy among the species.
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4.2.4 Energy and parধcle conservaধon

The equation that governs the evolution of the nonthermal distribution, Equation 4.14, is a conser-

vation law for a particle current in five dimensions, three spatial, one time, and one corresponding

to the individual particle energies. As this equation is evolved via finite volume algorithms, the

total number of particles in the distribution is conserved. The total internal energy density in the

distribution is given by integrating n(γ) times the particle energy (γ−1)mec2 over γ (Equation 4.4).

While particles are not lost from the distribution by evolving Equation 4.14 (excepting boundary ef-

fects), energy can be lost from the nonthermal distribution in radiative cooling, Coulomb coupling,

or adiabatic expansion; the distribution can also gain energy in adiabatic compression. Because

the finite volume form of Equation 4.14 does not conserve the particle energy current, and because

KORAL uses a numerical approximation to the integral in Equation 4.4 to compute the internal en-

ergy in the nonthermal distribution, the evolution of the nonthermal distribution on its own does

not conserve total energy.

KORAL accounts for this mismatch in two ways. In the implicit step, where nonthermal electrons

lose energy to radiation and Coulomb coupling, it simply ensures that total energy is conserved by

adjusting the nonthermal energy flux into radiation (−Ĝ0
nth) to reflect the energy that is actually lost

in cooling the nonthermal distribution. That is, instead of using Equation 4.10, Ĝ0
nth is computed by

computing the difference in the total nonthermal energy density at a given sub-step in the implicit

solver with the energy density computed before the implicit step, subtracting off the small part of

the cooling that is due to Coulomb coupling (which goes into thermal electrons). When Ĝ0
nth is

needed outside of the implicit solver, KORAL uses Equation 4.10. In this way, the total energy is

conserved and the shape of the nonthermal distribution is not affected, although the total energy

in the distribution may differ from the value computed from an analytic solution or found in a
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simulation with finer sampling in γ.

In the intermediate step, where particles are heated or cooled by adiabatic compression or ex-

pansion, KORAL cannot account for the missing/extra energy by simply adding it to radiation or the

thermal population. The adiabatic heating/cooling of the nonthermal distribution is part of the

adiabatic evolution, and correctly computing the viscous heating via Equation 4.32 depends on

properly evolving the independent species energies independently and adiabatically. In this case,

the distribution is evolved explicitly, and then the computed ∆n(γj) at each sampled γj is scaled

so that the total change in energy during the adiabatic step ∆uadiab, nth is equal to the amount

given by the total instantaneous rate of adiabatic energy increase. That is, the distribution after

adiabatic compression/expansion is scaled so that

∆uadiab, nth = mec2
∫ γmax

γmin
γ̇adiabn(γ)d γ. (4.33)

Scaling the distribution in this way can bias the shape of the distribution (Section 4.3.2). However,

the energy gained and lost in this step is applied correctly (Section 4.3.1), and the computation of

the viscous heating rate qv is consequently not biased.

4.3 Tests

This section describes several test problems to demonstrate the accuracy of the nonthermal electron

evolution as implemented in KORAL.
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Figure 4.1: (Left) The increase of the total energy of nonthermal electrons ∆Unth integrated over the turbulent box
of Section 4.3.1. The total electron heating fraction was set at δe = 0.1, and three runs were performed with non-
thermal heating fraction δnth = 0.01 (red), δnth = 0.05 (green), and δnth = 0.1 (blue). The open circles indicate
the increase of the internal energy of the nonthermal population, and the solid lines show the predicted increase,
which is the fraction (δeδnth) of the increase in the total gas energy. (Right) The fraction Uspecies/Ugas of the ther-
mal energy of the thermal electrons (dashed lines) and nonthermal electrons (solid lines). As time proceeds and
energy from viscous dissipation is divided among the different species, the energy fraction in each species asymp-
totes to the value given by the corresponding fixed viscous heating injection fractions: δe(1 − δnth) for thermal
electrons, and δeδnth for nonthermal electrons.
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4.3.1 Driven turbulence

The first test validates the implementation of adiabatic evolution and viscous heating of the non-

thermal population. This test is a modification of the turbulent box test from Sądowski et al.

(2017), which was inspired by the MHD driven turbulence test of Ressler et al. (2015). A fraction

δe = 0.1 of the dissipative heating qv is deposited into the electrons, of which a fraction δnth goes

into the nonthermal population via Equation 4.17. The remaining fraction δe(1 − δnth) goes into

the thermal electrons by Equation 4.24.

This test begins with an initial uniform two dimensional system of size L with density ρ0, zero ve-

locity, speed of sound cs0 = 8.6×10−4c, a horizontal magnetic field with β = pgas/pmag = 6, no non-

thermal electrons, and periodic boundary conditions. The system is driven with random, divergence-

free Gaussian perturbations in the velocity with a power spectrum P (|δv|2) = k6 exp(−8k/kpk),

where kpk = 4π/L. These perturbations add kinetic energy to the system which dissipates into

internal energy of the gas, divided among the three species. Radiation and Coulomb coupling are

turned off.

The open circles in the left panel of Figure 4.1 shows the resulting increase of the total energy in

nonthermal electrons integrated over the simulation volume for three runs with δnth =.01, .05, and

0.1, respectively (open circles). The circles are compared with the corresponding fraction δeδnth of

the increase in the total gas energy (solid lines). The close agreement shows that the combination

of viscous heating and the change in energy from adiabatic compression and expansion (as a result

of turbulence) is handled consistently among the three populations. In particular, the energy nor-

malization performed on the nonthermal distribution during the adiabatic compression/expansion

step (Section 4.2.4) is necessary to identify the correct amount of viscous heating and produce the

good agreement shown in Figure 4.1.
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Figure 4.2: Results of a test of adiabatic compression with constant uµ;µ = −5 × 10−3 s−1 and particle injection
with slope p = 3.5 between γinj min = 500 and γinj max = 5 × 105. The injection distribution is normalized so
that the total injection rate is 1000 particles cm−3 s−1. The solid lines show the analytic solution to the problem
at times t = 10−2, 10−1, 1, 10, 102, 103 and 104 seconds (progressing upward in γn(γ)). The open circles show
the KORAL solution at the corresponding times.

The right panel of Figure 4.1 shows the ratio of the energy densities of the two electron popula-

tions to the total gas energy density: Uth/Ugas, and Unth/Ugas. As energy is dissipated and divided

among the species, the ratios of the species energies to the total internal energy correctly asymptote

to the injection fractions δe(1− δnth) and δeδnth for thermal and nonthermal electrons, respectively.
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4.3.2 Parধcle injecধon and adiabaধc compression

This test validates the implementation of the adiabatic heating and cooling of electrons under gas

compression and expansion (Equation 4.16) Consider a zero-velocity gas background with constant

injection of nonthermal electrons with a power-law slope p = 3.5 between γinj min = 50 and γinj max =

5× 105. The test subjects this system to a constant artificial compression rate (not computed from

the actual gas four-velocity) uµ;µ = −5 × 10−3 s−1, similar to the compression rate found in

the equatorial plane at a radius of ∼ 5 rg in the accretion disk simulations described later in

Section 4.4. The analytic solution to this problem (Manolakou et al. 2007, Appendix A) shows the

development of a break from the injection power-law slope −p to a slope of −1 at low γ, with the

break propagating to higher γ with increasing time.

Figure 4.2 shows the results of the test at logarithmically spaced time intervals. The open circles,

which denote the KORAL solution, mostly line up well with the analytic result. Deviations arise from

two effects. First, the numerical scheme is diffusive and thus smooths out sudden breaks in the

slope of n(γ). This is seen as a tail above the maximum γ of the true distribution, and also at the

break between slope -3.5 to -1, around γ = 3000 for t = 1000 s. Second, due to the smoothing out of

breaks in solving Equation 4.14 numerically, energy tends to be lost from the distribution compared

with the analytic value. Since KORAL enforces that the total energy is conserved by rescaling the

injected particle distribution QI (Equation 4.33), this diffusion leads to a shift in the normalization

(Section 4.2.4). This effect is obvious in the KORAL solution at t = 103 s. Once the spectrum has

broken completely, the KORAL solution matches the analytic solution for all γ. In practice, a fluid

parcel in a turbulent simulation will experience many phases of compression and expansion, which

may wash out the energy correction effect illustrated in this test.
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4.3.3 Synchrotron and inverse Compton cooling

The following two tests in a flat, zero-velocity gas background with constant injection of nonthermal

electrons and radiative cooling check the implementation of radiative cooling in KORAL’s implicit

solver.

In the first test, particles are injected with a power-law slope p = 3.5 between γinj min = 1000

and γinj max = 106 and are then subjected to synchrotron cooling in a constant magnetic field

of B = 200 G. Under constant injection and synchrotron cooling, and for t < tsyn, the particle

spectrum develops a cooling break from the injection power-law slope −p to a slope −(p+ 1) at a

break Lorentz factor γbrk given by

γbrk = (1/γinj max − bst)
−1, (4.34)

bs = 1.292× 10−9(B/ 1G)2,

where the synchrotron cooling time tsyn is

tsyn = (γ−1
inj min − γ−1

inj max)/bs. (4.35)

At t = tsyn, the cooling break reaches γinj min, and at later times the spectrum cools to γ < γinj min

with a power-law slope of −2.

The results from KORAL are compared with the analytic solution in Figure 4.3. The development

of the synchrotron cooling break and its propagation to lower particle energies with time is clearly

captured in the KORAL solution. The numerical solution from KORAL cannot capture the sharp cutoff

at low particle energies, and it produces a tail extending to low γ (note that the vertical scale is

over 14 orders of magnitude, so the discrepancy is not serious). However, the location of the peak
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Figure 4.3: Results of a test with constant particle injection with slope p = 3.5 between γinj min = 1000 and
γinj max = 106 coupled with synchrotron cooling in a uniform magnetic field with B = 200 G. The injec-
tion distribution is normalized so that the total injection rate is 1000 particles cm−3 s−1. The numerical so-
lution from KORAL’s implicit solver (open circles) is compared with the analytic solution (solid lines) at times
t = 10−3, 10−2, 10−1, 1, 10, 102, 103 and 104 seconds. The spectrum develops a cooling break between the in-
jection slope p for γ < γbrk and p + 1 for γ > γbrk. The cooling break starts at large γ and propagates toward
lower γ until the spectrum is broken over the entire injection range at t = 10 s. After this time, the spectrum
cools to γ < γinj min with slope p = 2. The sharp discontinuity at the lower end of n(γ) is smeared out in the
numerical KORAL solution because of diffusion in the upwind finite differencing method. However, KORAL accurately
captures the location of the peak of γn(γ) as it propagates to lower energies.
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in the spectrum as a function of time is reproduced well.

The next test of the KORAL implicit solver for radiative nonthermal cooling replicates a problem

from Manolakou et al. (2007) that demonstrates the effects of the Klein-Nishina cross section in

the inverse Compton cooling term (Equations 4.21 and 4.23). Neglecting bremsstrahlung radiation

and Coulomb coupling, the cooling rate is

γ̇ = bsynγ
2

[
1 +

urad
umag

(1 + 4γϵ0)
−3/2

]
, (4.36)

where bsyn = −1.292×10−11 (B/1G)2 and ϵ0 = kBTR/mec2. The test assumes a uniform background

similar to a stellar environment dominated by hot young stars (Manolakou et al., 2007), with

B = 10 µG, urad = 7.95× 10−10 erg cm−3, and Trad = 30000 K. Electrons are injected in a power

law with p = 2 between γinj min = 100 and γinj max = 109, normalized so that the total injection rate

is 10−3 particles cm−3 s−1.

The results are displayed in Figure 4.4 at times t = 105, 5× 105, and 106 yr. The KORAL solution

(open circles) lines up well with the semi-analytic solution (Manolakou et al., 2007, solid lines;),

demonstrating the code’s ability to accurately capture details of the radiative cooling of nonthermal

distributions beyond simple synchrotron cooling.

The solution in this test displays different behavior in three distinct regimes. From Equation 4.36,

at the highest energies, γ > γsyn =
(
(urad/umag)2/3 − 1

)
/4ϵ0, the solution is dominated by syn-

chrotron cooling. Hence the spectrum shows a characteristic synchrotron cooling break above γsyn,

where the slope becomes −(p + 1) = −3. Equation 4.36 also indicates that below γKN ≈ 1/4ϵ0,

the Thomson limit applies. Between γKN and γsyn, the decrease in the cooling rate due to the

Klein-Nishina cross section causes the spectrum to harden compared to what is predicted when

only Thomson scattering is considered (dotted lines in Figure 4.4). As time progresses, electrons
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Figure 4.4: Nonthermal energy distribution evolution in an environment with B = 10µG, urad = 8.01 × 10−10

erg cm−3, and Trad = 30000 K. Particles are injected in a power law with p = 2 between γinj,min = 100 and
γinj,max = 109. The numerical solution from KORAL’s implicit solver (open circles) is compared with the semi-
analytic solution (solid lines) at times t = 105 (green), 5 × 105 (purple) and 106 yr (blue). The analytic solution
for the same problem neglecting the Klein-Nishina cross section of electrons (taking FKN = 1 in Equation 4.21) is
also displayed (dotted lines).
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initially injected at γinj max cool to lower energies γcool. By the last time shown, γcool < γKN; elec-

trons injected at the highest energies have cooled below the energies where the Klein-Nishina cross

section dominates, and Thomson cooling begins to break the spectrum for γ < γKN.

Because the cooling rates in this problem are so low, even over 106 years of evolution the spectrum

does not have time to cool much below the injection range. Therefore, the implicit solver does not

have to deal with abrupt discontinuities in the spectrum, and except for the slight smoothing out of

the synchrotron break, the obvious diffusion seen in the tests in Figures 4.2 and 4.3 is not apparent

here.

4.4 Test simulaধon of Sgr A*

As a test of the entire code with all elements included, this section presents 2D simulations of an

accreting supermassive black hole with parameters appropriate for the accretion flow in Sgr A∗.

Two simulations were run using a pure thermal model with a two-temperature plasma (two fluid

populations, thermal ions and thermal electrons, similar to Sądowski et al. 2017), and a nonthermal

model with all three fluid populations (thermal ions, thermal electrons and nonthermal electrons,

using the full method of Section 4.1.1).

For the injection properties of the nonthermal population these simulations use a very simple

ad hoc prescription, which will need to be improved in the future for modeling real systems. A

constant fraction of the local viscous electron heating rate goes into nonthermal electrons, with a

fixed energy spectrum that is independent of location in the simulation box. The observed infrared

and X-ray variability of Sgr A∗(Dodds-Eden et al., 2011; Neilsen et al., 2013) suggests that the

nonthermal acceleration mechanism is localized, either in magnetic reconnection regions (Sironi &

Spitkovsky, 2014) or in shocks (Guo et al., 2014). Recently, Ball et al. (2016) showed that the
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X-ray variability of Sgr A∗could be qualitatively reproduced by adding a nonthermal distribution

by hand in regions of high magnetization in a single-fluid GRMHD simulation. A future work will

consider full 3D GRMHD+nonthermal electron simulations using more elaborate localized injection

prescriptions informed by these studies (e.g., using the prescription for p and δnth from the magnetic

reconnection PIC simulations of Ball et al. 2018).

4.4.1 Units

These simulations assume a Schwarzschild spacetime (spin a = 0) with black hole mass M =

4 × 106M⊙, near the measured mass of Sgr A∗(GRAVITY Collaboration et al., 2018a). The

gravitational radius rg = GM/c2 = 6 × 1011 cm = 0.04AU, and the gravitational timescale tg =

rg/c = 20 s. The Eddington luminosity LEdd = 5×1044 erg s−1, and the Eddington accretion rate

(Equation 0.3, with η = 0.057) is ṀEdd = 0.16M⊙ yr−1.

4.4.2 Model setup

The simulations in this section used in Kerr-Schild coordinates with an axisymmetric 2D grid of

resolution of 256×256 cells in radius and polar angle. The radial cells are distributed exponentially

from inside the BH horizon at 1.85 rg to 1000 rg, and the polar angle cells are sampled using the

transformation described in Appendix B.

The initial fluid conditions are identical to the model Rad8SMBH in Sądowski et al. (2017). The

simulation starts with a hydrostatic equilibrium torus with an inner edge at 10 rg and is threaded

by a weak magnetic field with dipolar field loops. The initial electron and ion temperatures are

set equal to the initial gas temperature, and there are no nonthermal electrons. In the initial

configuration, the torus is surrounded by a static atmosphere with negligible mass and radiation

energy density, but with the radiation temperature everywhere set to 105 K.
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The model ran for a total time of 2× 104 tg with nonthermal electron evolution turned off. The

thermal electron and ion populations were heated using the viscous heating prescription of Howes

(2010). They exchanged energy with each other via thermal Coulomb coupling, and the thermal

electrons radiated via synchrotron, bremsstrahlung, and inverse Compton scattering. Throughout,

the mean-field dynamo from Sądowski et al. (2015) prevents the decay of the axisymmetric magnetic

field. This purely thermal simulation is referred to as the control run.

In the control run, gas begins accreting on the black hole around t ≈ 3000 tg, and by t = 104 tg,

the accretion is in steady state. At this time, the gas density and magnetic field strength were

scaled to achieve the desired accretion rate of Ṁ ≈ 4 × 10−8ṀEdd appropriate for Sgr A∗. The

simulation was evolved with the rescaled density from t = 104 tg up to 2 × 104 tg. The data from

the time period 1.5× 104 − 2× 104 tg were then used to study the properties of the accretion flow.

A system with nonthermal electrons included (nonthermal run) was initialized with the rescaled

output from the control run at time 104 tg and was evolved from t = 104 tg up to 2 × 104 tg with

all the nonthermal interactions turned on. The nonthermal electron energy distribution is tracked

over N = 32 bins ranging from γmin = 200 to γmax = 2 × 106, a resolution of 8 bins per decade.

γmin is set above the characteristic electron energy Θe = kBTe/mec2 for a temperature at the high

end of the range observed in the control model, around Te ∼ 1012 K.

For the nonthermal injection, the power-law index is fixed at p = 3.5, consistent with past studies

(Özel et al., 2000; Yuan et al., 2003) and with observational constraints (Porquet et al., 2008;

Barrière et al., 2014). Electrons are injected between γinj min = 500 and γinj max = γmax = 2 × 106.

The nonthermal heating fraction was fixed at 1.5%, δnth = 0.015 (Özel et al., 2000; Yuan et al.,

2003; Ball et al., 2016; Mao et al., 2016). The total electron heating fraction δe, of which 98.5%

goes to the thermal species, is determined using the prescription of Howes (2010), which is a (strong)

function of the magnetization parameter βi = pgas/pmag (Equation 1.33).
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Figure 4.5: Comparison of time-averaged quantities in the control thermal run (top row) and the nonthermal run
(bottom row). Averages are taken over the period t = 1.5 × 104 − 2 × 104 tg, and the distributions are sym-
metrized about the equatorial plane. In each column, the same color scale is used in the upper and lower panels.
From left to right, the quantities shown are the gas density ρ, the electron temperature Te, and the fluid frame
radiation power −Ĝ0. The presence of nonthermal electrons does not significantly affect either ρ or Te. However,
the nonthermal model has significantly more radiative power, especially at larger radii.

4.4.3 Comparison of thermal and nonthermal models

Figure 4.5 compares time-averaged spatial distributions of several quantities in the control (thermal)

run with those in the nonthermal run. For each model, the quantities are averaged over the time

range t = 1.5 × 104 − 2 × 104 tg, and also symmetrized around the equatorial plane for additional

smoothing of the results.

Figure 4.5 indicates that the overall structure and distribution of the gas density and electron

temperature are similar in the two models. This is expected, since the fraction of electron energy

that goes into the nonthermal electrons is only 1.5%. Furthermore, the accretion flow in these

simulations is optically thin and radiatively inefficient, so the emission from the nonthermal elec-

trons does not significantly alter the gas dynamics. Indeed, the gas dynamics and electron and ion

thermodynamics in both the control run and the nonthermal run are quite similar to the thermal

model Rad8SMBH presented in Sądowski et al. (2017).

The last column of Figure 4.5, however, shows that the rest frame power of the emitted radiation
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is not the same in the control and nonthermal runs — it is enhanced in the latter run, most

significantly at large radii. The spatial distribution of the nonthermal emission is purely the result of

the particular injection prescription used. Nonthermal electrons start with the same energy fraction

δnth = 0.015, in the same power-law distribution, everywhere in the simulation. In addition, the

magnetic field strength is fairly constant (B ∼ 10G) over much of the region of interest. Therefore,

the amount of nonthermal synchrotron emission is directly proportional to the viscous heating

rate of the gas. On the other hand, the thermal electron temperature varies substantially with

radius, falling to below ∼1010 K by a radius of 30 rg. Since thermal synchrotron power varies as

T 2
e , the thermal emission falls rapidly with increasing radius. Thus, the thermal electrons are more

advection-dominated at large radii compared to the nonthermal electrons.

4.4.4 Nonthermal simulaধon properধes

Figures 4.6 and 4.7 show time-averages and snapshots of several quantities in the nonthermal run.

The snapshot in these comparisons (right side of each panel) corresponds to t = 1.8 × 105 tg and

the time-averaging (left side of each panel) is done from t = 1.5× 104 − 2× 104 tg.

The top panel in Figure 4.6 shows the gas density ρ. As expected, and as seen also in the

control run (Figure 4.5), the disk is geometrically thick and turbulent, the latter evident in the

snapshot density distribution (even more so in the temperature distribution discussed next). The

blue contour corresponds to the location where the accretion time-scale tacc in the time-averaged

model is equal to the time-averaging duration 5000 tg. The accretion time scale is defined as

tacc ≡
r√

v2r + r2v2θ

. (4.37)

Since the total duration of the nonthermal run is 104 tg, the above limit is a conservative estimate
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Figure 4.6: Snapshot (right) and time-averaged (left) distributions of (from top to bottom) gas density ρ, thermal
electron temperature Te, ratio of nonthermal to thermal electron energy densities ue nth/ue th, and fraction of elec-
trons in the nonthermal distribution ne th/ni. The blue contour in the first panel encloses the region of the simula-
tion that is in inflow equilibrium, as determined by Equation 4.37.
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Figure 4.7: Snapshot (right) and time-averaged (left) distributions of (from top to bottom) magnetic field strength
|B|, magnitude of the radiation flux |F |, fluid frame radiation power from thermal electrons −Ĝ0

th, and fluid frame
radiation power from nonthermal electrons −Ĝ0

nth. Contours in the first panel show poloidal magnetic field lines.
Streamlines in the second panel show the direction of the radiation flux.
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of the region of inflow equilibrium (it corresponds to the ‘strict’ criterion, as defined in Narayan

et al. 2012).

The second panel in Figure 4.6 shows the electron temperature, which ranges from ∼1010K in

the disk at r ≈ 30 rg to 1012K in the funnel region. In very low accretion rate systems such as Sgr

A*, both radiative cooling and Coulomb coupling are weak and neither is capable of controlling the

electron temperature (Yuan & Narayan, 2014). The temperature is thus primarily determined by

the viscous heating and is highly dependent on the heating fraction δe. As in the 3D simulations in

Chapter 2, The Howes (2010) prescription has high δe ≈ 1 in regions of high magnetization, which

explains the high temperature in the polar region (where βi < 1) compared to the equatorial plane

(where typically βi > 5).

The third panel in Figure 4.6 shows the ratio of the energies in nonthermal and thermal electrons.

Since the radiative and Coulomb coupling between the two species is weak, the energy ratio should

be set primarily by the injection ratio δnth, which was fixed at 1.5% throughout. In much of

the equatorial plane out to r ≈ 30 rg, the energy ratio is indeed approximately equal to δnth.

Regions where the ratio is lower than δnth correspond to places where the electron temperature is

lowest. In these regions, the overall electron heating fraction δe is small and there has not been

enough injection of nonthermal particles to bring the energy up to the injection value. Conversely,

in the snapshot distribution, some regions have a nonthermal-to-thermal energy ratio exceeding

δnth. In these regions, the thermal electrons are heated to high temperatures ∼ 1012 K. At these

temperatures, the thermal electrons that produce most of the synchrotron emission have Lorentz

factors γ > 500, greater than the minimum γinj min of the injected nonthermal electrons. These

high-γ thermal electrons lose energy rapidly to radiation more rapidly than electrons at the peak

of the nonthermal distribution.

Finally, the fourth panel in Figure 4.6 shows the overall fraction of the electron population that
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is in the nonthermal distribution. In the snapshot image, regions with a high ratio of nonthermal

electrons to the total population are coincident with regions of high thermal electron temperature

(second panel). This is because both distributions are primarily driven by the fraction δe of electron

viscous heating (since δnth is fixed).

Figure 4.7 displays quantities related to the cooling and radiation from nonthermal particles.

The top panel shows the magnetic field strength, which is on average ∼ 10G throughout much of

the region in inflow equilibrium (r ≲ 40 rg). However, the snapshot on the right shows considerable

evidence for turbulence and deviations from the mean. Regions with a stronger magnetic field in

the snapshot image correlate with regions of higher thermal electron temperature (second panel of

Figure 4.6); this is expected since the electron energy injection fraction δe increases with magneti-

zation. In addition, since the nonthermal injection rate is proportional to δe, the same regions also

stand out in the snapshot distribution in the fourth panel of Figure 4.6.

The second panel in Figure 4.7 shows the magnitude of the radiation flux F̂ i, represented by the

color scale, with streamlines indicating the direction of the flux vector. Since the accretion flow is

highly optically thin, radiation is emitted more-or-less isotropically and freely streams out of the

system.

The third and fourth panels in Figure 4.7 show the fluid frame power in radiation from thermal

and nonthermal electrons, respectively. The thermal emission dominates in the inner regions up

to r ∼ 10 rg, and then declines rapidly at larger radii where the electrons are cooler. However, as

previously discussed, highly energetic nonthermal electrons are present even at large radii, because

of the simple injection prescription. Therefore, there is significant nonthermal synchrotron emission

out to r ∼ 50 rg. The two snapshot panels show that the instantaneous radiation power in both

thermal and nonthermal emission traces the regions of strongest magnetic field in the top panel.
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4.4.5 Synchrotron break

The dominant physical processes shaping the evolution of the nonthermal electron energy distri-

bution n(γ) in the nonthermal simulation are electron injection and synchrotron cooling. As the

nonthermal particles cool via synchrotron emission, the spectrum will break from the injection

power-law slope −p = −3.5 to −(p+1) = −4.5. The γbrk at which the break occurs moves to lower

values with increasing time. From Equation 4.35, under constant injection and given a character-

istic magnetic field strength of B ∼ 10G, γbrk will move all the way down to γinj min in 1.5 × 104

s, or 780 tg. However, in the actual simulation, non-constant particle injection rates, adiabatic

compression, and advection modify the development of the synchrotron break and can locally shift

the break Lorentz factor to higher γ, with advection having the strongest effect.

The top panel of Figure 4.8 plots the ratio of the synchrotron cooling time tsyn (Equation 4.35)

to the accretion time-scale tacc (Equation 4.37). This ratio is > 1 almost everywhere in the region

considered, which indicates that, before the spectrum can break fully, the gas is advected away or

falls into the black hole.

The second panel of Figure 4.8 shows the Lorentz factor γbrk of the synchrotron cooling break in

the nonthermal distribution. By the late times considered, the cooling break has propagated to low

Lorentz factors, but since the accretion time-scale is shorter than the cooling time-scale, the break

still lies above γinj min. In much of the disk, the break Lorentz factor γbrk ∼ 3000. In the funnel

region, gas moves with high velocities either into the BH or out along the axis; the corresponding

small inflow/outflow (advection) time-scale means that electrons do not have enough time to cool

before being swept away. Thus, the break Lorentz factors in the funnel are typically higher than

in the rest of the simulation, γbrk ∼ 104.

In the time-averaged distribution, the ratio of synchrotron to advection times can provide a quick
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Figure 4.8: (Top) Ratio of synchrotron cooling time-scale to accretion time-scale, tsyn/tacc, for a snapshot at t =
1.8 × 104 tg (right) and corresponding ratio computed from time-averaged primitives (left). (Bottom) Location
of the synchrotron cooling break Lorentz factor γbrk. The cooling break is at higher γ in regions where tsyn/tacc is
large. Electrons in such regions are advected away before they can be cooled by the magnetic field.
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estimate of the break Lorentz factor. In the funnel regions, where tsyn/tacc ≈ 100, the position of

the break is estimated by substituting tsyn/100 in Equation 4.34; the result is γbrk ≈ 5 × 104. A

comparison with the second panel shows that this quick estimate is reasonably good.

The snapshot distribution of break Lorentz factor shows more structure than the average. Much

of this structure is due to the turbulent magnetic field, which creates regions of short and long

synchrotron cooling times. However, the regions with high γbrk do not always have a one-to-one

correspondence with regions of large tsyn/tacc (see e.g., around x = 20 rg, z = 10 rg). In addition

to synchrotron cooling and advection, other processes – particularly adiabatic compression – can

shape the spectrum. Compression acts to push the entire distribution to higher γ, so it naturally

pushes the break Lorentz factor to a higher γ than predicted by Equation 4.34.

4.4.6 Spectra and images

Spectral energy distributions (SEDs) and images for both the thermal-only control model and

the full nonthermal model were computed using grtrans, modified to compute the nonthermal

synchrotron emissivity jν and absorption coefficient αν directly from the local magnetic field and the

appropriate integrals over the nonthermal electron energy distribution n(γ) (Rybicki & Lightman

1979, equations 6.33 and 6.50).4 The integrals for jν and αν are

jν =

√
3

4π2
e3B sinα
mc2

∫
n(γ)F

(
ν

νc

)
dγ, (4.38)

αν =
4π

3
√
3

e

B sinα

∫
n(γ)

γ5
K5/3

(
ν

νc

)
dγ. (4.39)

4To derive Equation 4.39 from Rybicki & Lightman (1979) equation 6.50, perform an integration by
parts and discard the boundary term. For recent work on integrating polarimetric synchrotron emissivities
from various electron distribution functions see Leung et al. 2011 and Pandya et al. 2016.
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Figure 4.9: (Left Panel) Median spectral energy distribution (solid lines) of the thermal control run computed from
the snapshot data from 15,000-20,000 tg, as observed at an angle of 60◦ with respect to the disk polar axis. The
shaded regions represent the 68% confidence interval (nominal 1σ range) for the time-variability of the spectra
in this interval. The green spectrum is obtained using grtrans (Dexter, 2016), which includes only synchrotron
radiation. The indigo spectrum was computed with HEROIC (Narayan et al., 2016), including bremsstrahlung emis-
sion and inverse Compton scattering. (Right Panel) Synchrotron-only spectra of snapshots from the nonthermal
simulation in the range 15,000-20,000 tg computed with grtrans. The green and blue lines show the spectra of
the thermal and nonthermal electrons, respectively, and the red line shows the total spectrum of both populations
combined. The dashed line shows the expected power-law slope produced by the broken spectrum of nonthermal
electrons, Lν ∝ ν−p/2 ∝ ν−1.75.
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In the above expression, α is the pitch angle between the line of sight and the magnetic field in

the fluid frame, F (x) = x
∫∞
x K5/3(y)dy is the synchrotron function, and νc is the characteristic

synchrotron frequency,

νc =
3 eB γ2 sinα

4πmec
. (4.40)

To speed up the computations, the modified grtrans code uses fitting functions for the synchrotron

function F (x) and Bessel function K5/3(x) from Fouka & Ouichaoui (2013).

The green curve in the left panel in Figure 4.9 shows the median grtrans synchrotron SED from

the thermal control run, computed from the snapshot data from 15,000-20,000 tg, as observed at an

angle of 60◦ with respect to the disk polar axis. The shaded region represents the 68% confidence

interval (nominal 1σ range) for the time-variability of the spectrum in this time interval. The

spectrum peaks at ν ∼ 1012Hz, with a steep fall-off at lower frequencies because of self-absorption

and a fall-off at higher frequencies because of the rapid decline in the number of thermal electrons

at large Lorentz factors.

The indigo curve in the same panel was computed using HEROIC to self-consistently solve for the

spectrum and angular distribution of radiation at each position using the radiative transfer equation.

The HEROIC radiative transfer includes all radiation processes — synchrotron, bremsstrahlung, and

inverse Compton scattering. In the synchrotron component, the HEROIC spectrum agrees very well

with the grtrans spectrum except at frequencies below 1010Hz. This small discrepancy arises

because the HEROIC computations were done using simulation data out to a radius of 300 rg, whereas

the grtrans calculations were limited to 50 rg.

The right panel in Figure 4.9 shows spectra of the nonthermal run computed with grtrans using

the same parameters as the left panel. Similarly to the left panel, the solid lines are the median SEDs

from the interval 15,000-20,000 tg, and the shaded regions are the 68% confidence range of the time
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variability. HEROIC does not presently include nonthermal electrons in its calculations. Comparing

the thermal-only (green curve) and the nonthermal-only (blue curve) grtrans spectra, thermal

emission dominates by far in the submillimeter band, nonthermal emission is modestly stronger

at infrared wavelengths. Nonthermal particles make the only contribution to the synchrotron

emission at X-ray wavelengths. The power-law synchrotron emission is optically thin, and shows

a characteristic slope Lν ∝ ν1/3 at low frequencies. The power-law tail in the spectrum at high

frequencies has a spectral slope Lν ∝ ν−p/2 ∝ ν−1.75, as expected for a cooled population of

electrons with a distribution mostly broken to a power-law slope −(p+ 1) = −4.5.

The red curve in Figure 4.9 shows the combined synchrotron emission from both thermal and

nonthermal electrons. By and large, the combined spectrum is a direct sum of the two independent

contributions, except at the lowest frequencies, where absorption by thermal electrons suppresses

the nonthermal emission (Özel et al., 2000; Yuan et al., 2003). This effect is seen also in other

recent studies in which synchrotron spectra from thermal and nonthermal electrons are computed

by post-processing single temperature GRMHD simulations (Ball et al., 2016; Mao et al., 2016).

Note that the spectra shown here include only thermal and nonthermal synchrotron emission. For

more realistic nonthermal spectra, it will be necessary to incorporate synchrotron, bremsstrahlung,

and inverse Compton scattering from nonthermal electrons into a global radiative transfer solver

like HEROIC or a Monte Carlo transfer code such as grmonty (Dolence et al., 2009).

Sgr A* is known to be more variable in the infrared compared to millimeter/submillimeter, and

it is even more variable in X-rays (Eckart et al., 2006; Yusef-Zadeh et al., 2006; Dodds-Eden et al.,

2009; Neilsen et al., 2013). From the variability in the spectra shown in the right panel of Figure 4.9,

it is clear that the uniform injection prescription used in this test generates little variability in the

nonthermal synchrotron emission at high frequencies. However, the present simulations are not

suitable for exploring the variability in detail, both because they are in 2D and because they use a
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Figure 4.10: Images (50 rg wide, using logarithmic color maps) of synchrotron emission only, computed using gr-

trans, for the time-averaged control run (top row) and the nonthermal run (bottom row). The images correspond
to 230GHz millimeter wavelength emission (left), 136THz near-infrared emission (middle), and 2 keV X-ray emis-
sion (right).

toy prescription for nonthermal energy injection. The thermal spectrum in Figure 4.9 shows that

variability in the thermal X-ray inverse Compton spectrum exceeds that in the direct synchrotron

emission at lower frequencies. Furthermore, a direct comparison of the thermal and nonthermal

frequency-integrated inverse Compton power shows that while the thermal IC power dominates in

the disk in the densest regions at small radii, the high energy of the nonthermal electrons (and

the fact that the IC power grows as γ2) leads to the nonthermal IC power exceeding the thermal

IC power in the funnel region and in the disk at radii ≳ 40 rg. Thus, nonthermal electrons should

make a significant contribution to the high frequency spectrum and variability from IC emission.

To accurately explore variability and flares from nonthermal electrons, these simulations must be

expanded to 3D with local injection prescriptions, and nonthermal bremsstrahlung and inverse

Compton emission should be included in the radiative transfer.
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Figure 4.10 shows grtrans-generated ray-traced images of the synchrotron emission from the

time-averaged simulations at 3 frequencies: 230GHz, which is near the thermal synchrotron peak

and corresponds to the observing frequency of the Event Horizon Telescope (Doeleman et al., 2008),

136THz in the near-infrared, and 4.8 × 1017Hz (2 keV) in X-rays. The images are 50 projected

gravitational radii across and displayed in a log scale. The bright regions of the image at 230GHz

are practically the same for the thermal and nonthermal runs, confirming that much of the emission

is from thermal electrons. There is, however, additional extended flux at large radii in the bottom

panel from emission by nonthermal electrons. The lensed photon ring in the infrared image is

brighter when nonthermal electrons are included, and the emission extends to noticeably larger

radii. The X-ray synchrotron image is almost entirely from nonthermal emission. As for the

spectra in Figure 4.9, these results depend sensitively on the simple nonthermal energy injection

prescription used.

4.5 Summary and conclusions

This chapter introduces a new algorithm to self-consistently evolve a population of nonthermal

electrons with an arbitrary distribution function in a black hole spacetime, in parallel with mag-

netized thermal gas and radiation. In each time step, a fraction of the viscously generated heat

is used to heat some of the thermal electrons and to transfer them to the nonthermal population.

The nonthermal electrons move with the fluid, and their energy distribution is modified by gas

compression and expansion, Coulomb coupling, and radiative cooling. The back-reaction of the

nonthermal electrons on the thermal population is automatically included.

The algorithm performs well on a variety of test problems, including the first test with a 2D

black hole accretion flow. This simulation has a low mass accretion rate, roughly equal to the rate

154



estimated in Sgr A∗. As a result, the nonthermal distribution does not significantly affect the gas

dynamics or thermodynamics of the thermal electrons or ions. However, the radiation power is

enhanced, since the nonthermal electrons radiate more efficiently than their thermal counterparts.

Furthermore, the energy distribution of the nonthermal electrons varies with location in the accre-

tion flow. The distribution exhibits a synchrotron cooling break, and the break Lorentz factor γbrk

varies with position, set by local conditions such as the magnetic field strength (which determines

synchrotron power) and the gas velocity (which sets the effective advection time). Furthermore,

γbrk is also modified by other factors such as strong adiabatic compression.

The accretion simulation in Section 4.4 considers only one particularly simple prescription for in-

jection into the nonthermal population, and the resulting simulation results are strongly influenced

by this choice. A constant injection range of γ, independent of radius, ensures that nonthermal

synchrotron emission dominates over thermal emission at large radii, where the temperature of

the thermal electrons falls off rapidly. This behavior is reflected in Figure 4.10, which shows that

at high frequencies, nonthermal electrons from farther out in the disk dominate the raytraced syn-

chrotron image of the accreting gas. Furthermore, the choice of a minimum injection Lorentz factor

γinj min = 500 means that most of the nonthermal emission is concentrated at infrared or higher fre-

quencies, while the image at 230 GHz is basically unchanged compared to a purely thermal model.

In principle, γinj min should be chosen such that the nonthermal population connects smoothly to

the thermal distribution, without a gap between the two.

Another consequence of the choice of injection parameters is that the high frequency nonthermal

emission in the simulation shows relatively little time variability. This stability arises because

nonthermal electrons are distributed smoothly and uniformly throughout the simulation with δnth =

0.015 everywhere. In contrast, the rapid variability that is observed in Sgr A∗is likely driven by

strong localized injection, perhaps from shocks or magnetic reconnection. This suggests a much
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more sporadic and localized injection of nonthermal energy, with small regions where the fraction

of energy going into the nonthermal electrons, δnth, is much larger than the 1.5% used in this work,

and large regions elsewhere with δnth near-zero (see Ball et al. 2016). Furthermore, particle-in-

cell simulations show that electrons accelerated in reconnection events attain progressively harder

energy spectra as the magnetization of the plasma increases (Sironi & Spitkovsky, 2014; Ball et al.,

2018). This effect will again have a strong impact on variability.

The next, natural application of the method presented in this chapter is thus to perform full 3D

simulations with nonthermal particle evolution sourced by localized injection in order to track the

origins and spatial and spectral evolution of flares from Sgr A∗. Ball et al. (2018) recently published

simple prescriptions for the power law index p and acceleration fraction δnth as a function of local

plasma parameters in simulations of magnetic reconnection. Their results predict that the power

law index p is a steep function of the magnetization σi, with values p ≈ 2 in reconnecting plasmas

at σi ≈ 1.5 This behavior implies that, under this prescription, flares should be sourced in high

σi regions close to the black hole in Sgr A∗, as nonthermal distributions from less magnetized

regions fall off quickly with energy at larger values of p. The recent detection of horizon-scale

circular motion in near-infrared flares by the GRAVITY interferometer (GRAVITY Collaboration

et al., 2018a) suggests that flares may arise in “hot spots” of high-magnetization plasma near

the black hole. New results from GRAVITY, the EHT, and other instruments in characterizing

the amplitudes, lifetimes, polarization, and orbits of Sgr A∗ flares in the submm, NIR, and X-ray

will provide a rich dataset for testing the particle acceleration mechanisms explored in full 3D

simulations performed using the method introduced in this chapter.

5This result is consistent with the measured near-infrared spectral index from Ponti et al. 2017 if the
power law is broken by cooling and flares originate from synchrotron emission.
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Part II
Imaging
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Interferometric imaging with
Regularized Maximum Likelihood

As described in the Introduction, the Event Horizon Telescope (EHT) is a global Very Long Base-

line Interferometry (VLBI) array with eight participating telescopes at six distinct geographical

sites (Paper II). With an operating wavelength of λ = 1.3 mm and with its longest baselines span-

ning nearly the Earth’s diameter bmax ∼ 104 km, the EHT’s nominal resolution, or its observing

wavelength divided by the longest baseline, is bmax/λ ≈ 25µas. Together, the EHT’s long baselines

and short operating wavelength provide the extremely fine resolution necessary to resolve and make

images of the lensed photon rings around the supermassive black holes in M87 (dshadow ≈ 40µas)

and Sgr A∗ (dshadow ≈ 48µas).

As an interferometer, the EHT does not measure the sky intensity distribution directly; rather,

it measures an incomplete set of complex “visibilities” which sample the Fourier components of

the underlying image. Reconstructing images from the measured interferometric data must be

done computationally in a process called “synthesis imaging.” However, because of the incomplete

Fourier sampling of the sparse EHT array, an infinite number of images can fit the measured data.

Synthesis imaging is an ill-posed problem.
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Standard inverse model approaches to interferometric imaging, such as the CLEAN algorithm

(Högbom, 1974; Clark, 1980), begin with an inverse Fourier transform of the sampled visibilities (the

“dirty image”) and then proceed to deconvolve artifacts introduced by the sparse Fourier sampling

(the Fourier transform of the baseline coverage pattern, or “dirty beam”). In particular, CLEAN

performs this deconvolution by decomposing the image into point sources. To use traditional

deconvolution imaging algorithms like CLEAN, the interferometric visibilities must be calibrated

for amplitude and phase errors. At high frequencies like the 230 GHz operating frequency of

the EHT, however, the atmospheric coherence time can be as short as seconds, and rapid phase

variations effectively eliminate the absolute interferometric phase. Absolute amplitude calibration

also becomes more difficult at high frequencies, where pointing errors can introduce large, time-

varying errors in station gain terms.

Most VLBI calibration errors can be decoupled into station-based gain terms (Thompson et al.,

2017, hereafter TMS). An interferometric array consisting of Ns stations samples Ns(Ns − 1)/2

visibilities at each time, but has only Ns unknown complex gains. Hence, the calibration is over-

constrained and combinations of the measured visibilities–closure quantities–can be formed that are

unaffected by calibration errors. For example, a closure phase is formed by adding together three

visibility phases around a triangle, canceling out the station-based phase errors on each individual

visibility (Jennison, 1958; Rogers et al., 1974). Likewise, the closure amplitude is a combination of

four visibility amplitudes that cancels out amplitude gain errors in a specified ratio (Twiss et al.,

1960). Despite the challenges in absolute calibration of a VLBI array, closure quantities provide

robust measurements of certain relative quantities, which carry information about source structure

that is only limited by the level of thermal noise.

When the data’s calibration is uncertain, the usual approach in VLBI imaging is to iterate be-

tween imaging with CLEAN and deriving new calibration solutions using information from the last-
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solved-for image — a so-called “self-calibration” or “hybrid mapping” loop (e.g., Wilkinson et al.,

1977; Readhead & Wilkinson, 1978; Readhead et al., 1980; Schwab, 1980; Cornwell & Wilkinson,

1981; Pearson & Readhead, 1984; Cornwell & Fomalont, 1999; Thompson et al., 2017). The results

and time to convergence of this approach depend on many assumptions made in the course of the

hybrid process; these choices include the initial source model used for self-calibration, which regions

to clean in a given iteration, the method used for deriving complex gains from a given image, and

how frequently to re-calibrate the data. The procedure used for each data set is not standard and is

typically driven by expert judgment; the sensitivity of the final image to these assumptions cannot

be directly inferred from the result.

In contrast with CLEAN’s approach of deconvolving the dirty image into point sources, imaging

algorithms in the family of Regularized Maximum Likelihood (RML) methods directly solve for

the source image pixels by finding the best-fit image to data, constrained by additional convex

“regularization” terms. The most familiar of these techniques is the Maximum Entropy Method

(MEM, see e.g Narayan & Nityananda 1986), but other regularizing functions such as image sparsity,

or smoothness can also be used. In contrast with CLEAN, RML methods only rely on comparing

the data computed from a trial image to the specified measurements. In other words, RML methods

never need to perform an inverse Fourier transform from calibrated data. As a result, they can

be used directly with robust data products derived from complex visibilities. The field of optical

interferometry has pioneered the use of imaging directly from the measured visibility amplitudes

and closure phases, bypassing the corrupted visibility phase (Buscher, 1994; Baron et al., 2010;

Thiébaut, 2013; Thiébaut & Young, 2017). Recently, several other methods have built on these

techniques in preparing imaging algorithms for EHT data, fitting some combination of closure

phases and visibility amplitudes directly while using different regularizing functions (e.g., Bouman

et al., 2016; Akiyama et al., 2017b). Extending these approaches further, RML methods provide a
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natural way to use both closure phases and amplitudes together as the fundamental data product,

bypassing the self-calibration loop entirely.

This chapter presents a framework for RML imaging in interferometry, focusing on a method (first

described in Chael et al., 2018b) which is the first to reconstruct images directly using only closure

amplitudes and closure phases. These reconstructions require no assumptions about absolute phase

or amplitude calibration beyond stability during the integration time used to obtain the visibilities.

The extreme case of complete closure-only imaging is particularly attractive for imaging with the

EHT, but in general it is the overall flexibility of RML methods that makes them excellent choices

for interferometric imaging. Chapter 6 builds off the general framework established here to discuss

the RML imaging software implemented in the eht-imaging Python library, which is a workhorse

of the EHT’s data processing and imaging pipelines.

5.1 Visibiliধes and closure quanধধes

5.1.1 Interferometric visibiliধes

Two telescopes i and j in an interferometer separated by a baseline vector b⃗ij measure a complex

visibility Vij by cross-correlating the electric field recorded at each station.1 The van Cittert-Zernike

theorem (van Cittert, 1934; Zernike, 1938) identifies the ideal visibility Vij measured by these two

stations with a Fourier component of the source brightness distribution I(x, y) on the sky:

Vij = Ĩ(u, v) =

∫ ∫
I(x, y)e−2πi(ux+vy) dx dy. (5.1)

1Interferometric visibilities are in general polarimetric quantities; at a given time and frequency, two
stations can measure visibilities corresponding to the four Stokes parameters I,Q,U, V by cross-correlating
different combinations of the two polarizations recorded at each station. This chapter focuses on total
intensity imaging; see Roberts et al. (1994) for a discussion of polarimetric quantities in VLBI and Chael
et al. (2016) for the RML polarimetric imaging method implemented in the eht-imaging library.
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Here, (x, y) are real space angular coordinates and (u, v) are the coordinates of the baseline vector

b⃗ij , projected in the plane perpendicular to the source line of sight s⃗ and measured in wavelengths

λ.2

Since the sky intensity distribution I(x, y) is real valued, the visibility is conjugate-symmetric in

the Fourier plane, V(−u,−v) = V∗(u, v). When Ns stations can observe the source, the number of

independent instantaneous visibilities NV is given by the binomial coefficient

NV =
Ns(Ns − 1)

2
. (5.2)

To fill in samples of the Fourier plane from the small number NV available at a single instant in

time, interferometric observations use “earth rotation aperture synthesis.” As the Earth rotates,

the projected baseline coordinates (u, v) trace out elliptical curves in the Fourier domain, providing

measurements of new visibilities from the same pair of telescopes.

The ideal identification of measured visibilities with Fourier components of the image is compli-

cated by several factors. First, thermal noise from the telescope receiver chains, Earth’s atmosphere,

and astronomical background corrupts the measured visibility. This thermal noise, ϵij , is assumed

to be drawn from a complex Gaussian distribution with a time- and baseline-dependent standard

deviation σij . The noise level depends on the telescope sensitivities, bandwidth, and integration

time. Second, each station transforms the measured incoming polarized waveform according to its

own (time-dependent) 2×2 Jones matrix Ji that adjusts the level of the measured signal ampli-

tude and mixes the measured polarizations (e.g.,Hamaker et al. 1996; TMS). For the total intensity

imaging considered in this chapter, each station is treated as contributing a single (time-dependent)
2Typically, u measures spatial frequencies projected along the east-west axis in the plane of the sky

(positive in the East), and v measures frequencies projected along the north-south axis (positive in the North).
The real space angular coordinates (x, y) are measured with the same conventions. The w component of the
baseline vector projected along the line of sight is unimportant unless the interferometer field of view is very
large (TMS).
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complex gain Gi eiϕi to the visibility. Appendix C discusses the full method for simulating realistic

data from polarimetric images in eht-imaging, including polarimetric leakage.

The station-based phase error ϕi results from uncorrected propagation delays and clock errors. In

particular, atmospheric turbulence contributes a rapidly varying stochastic term to each ϕi, which

for EHT observations at 1.3 mm has a coherence time on the order of seconds. The amplitude gain

term Gi arises from uncertainty in the conversion of the correlation coefficients measured on each

baseline to units of flux density. In general, Gi is more slowly varying than ϕi.

Including all of these corrupting factors, the full complex visibility is

Vij(u, v) = GiGjei(ϕi−ϕj) (Vij(u, v) + ϵij) , (5.3)

where the measured visibility, gain amplitudes, phases, and thermal noise all vary in time.

Note that Equation 5.3 represents all systematic errors (e.g., those other than thermal noise)

as station-based effects. In practice, effects such as polarization leakage and bandpass errors will

also contribute small baseline-based effects that can bias closure quantities. However, these errors

are generally much more slowly varying than ϕi or Gi and can often be removed with a priori

calibration of the complex visibilities.

5.1.2 Closure phases and closure amplitudes

Two types of “closure quantities” can be formed from interferometric visibilities that are insensitive

to station-based complex gain terms. While these quantities are robust to the presence of arbitrar-

ily large complex gains on the visibilities, they contain less information about the source than

the full set of complex visibilities. Furthermore, because closure quantities mix different Fourier

components, they can be difficult to interpret physically.
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First, multiplying three complex visibilities around a triangle of baselines eliminates the complex

gain phase terms (Jennison 1958; Rogers et al. 1974; TMS). For three stations on a triangle i–j–k,

the visibility bispectrum is

VB, ijk ≡ |VB, ijk|eiψijk = Vij Vjk Vki. (5.4)

While the bispectral amplitude |VB| is affected by the amplitude gain terms Gi in Equation 5.3, the

phase of the bispectrum is preserved under any choice of station-based phase error. This closure

phase ψi is thus a robust interferometric observable; apart from thermal noise, the measured closure

phase is the same as the closure phase of the observed image.

The total number of closure phases at a moment in time is equal to the number of triangles

that can be formed from stations in the array,
(
Ns

3

)
. However, not all of these closure phases are

independent, as some can be formed by adding or subtracting other closure phases in the set. The

total set of independent closure phases can be obtained by selecting an antenna as a reference and

choosing only the triangles that include that antenna (Twiss et al. 1960; TMS). The total number

of such independent closure phases is

Nψ =

(
Ns − 1

2

)
=

(Ns − 1)(Ns − 2)

2
. (5.5)

Nψ is less than the number of measured visibilities at a given time (Equation 5.2) by the fraction

1− 2/Ns.

Second, on any set of four stations, closure amplitudes are formed by taking ratios of visibility

amplitudes so as to cancel all the amplitude gain terms Gi in Equation 5.3. Up to inverses, the

baselines among any set of four simultaneously observing stations {ijkℓ} can form three quadrangles
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with three corresponding closure amplitudes AC:

AC, ijkℓ =
AijAkℓ
AikAjℓ

, AC, ikjℓ =
AikAjℓ
AijAkℓ

,

AC, iℓjk =
AiℓAjk
AijAℓk

, (5.6)

where the A terms are the (debiased) visibility amplitudes (Equation 5.9). Since the product of

the three closure amplitudes in Equation 5.6 is unity, only two closure amplitudes in the set are

independent. The total number of instantaneous closure quadrangles is 3
(
Ns

4

)
, but the number of

independent closure amplitudes is

NC =
Ns(Ns − 3)

2
. (5.7)

NC is equal to the total number of visibilities minus the number of unknown station gains (TMS).

At any given time, the number of closure amplitudes is less than the number of visibilities by

a fraction 1 − 2/(Ns − 1). Like the visibility amplitude and bispectrum, closure amplitudes are

biased by thermal noise, and their distribution becomes highly non-Gaussian even at moderate

SNR (Blackburn et al., 2019). For this reason, the logarithm of the closure amplitudes lnAC is

often used in the RML imaging methods presented later in this chapter (see Section 5.2.2).

The robustness of closure phases and amplitudes to calibration errors comes at a cost of the loss

of some information about the source. For instance, closure phases are insensitive to the absolute

position of the image centroid, and closure amplitudes are insensitive to the total flux density. These

can be constrained separately, either through arbitrary choices (e.g., centering the reconstructed

image) or through additional data constraints (e.g., specifying the total image flux density through

a separate measurement).
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5.1.3 Redundant and trivial closure quanধধes

Some VLBI arrays include multiple stations that are geographically co-located. For instance, the

EHT includes two stations on Maunakea in Hawai‘i (the SMA and the JCMT) as well as two

stations in the Atacama desert in Chile (the ALMA array and the APEX telescope). Practically,

any two stations that form a baseline that does not appreciably resolve any source structure can

be considered co-located.

These “redundant” stations can still be used to form closure quantities. In the case of clo-

sure phase, the added triangles provide no new source information. Specifically, any triangle

{⃗b12, b⃗23, b⃗31} that includes two co-located stations {1, 2} will include one leg that measures the

zero-baseline visibility; V12 = Ĩ(0, 0). The zero-baseline visibility is the integrated flux density of

the source; it has zero phase (see Equation 5.1). The remaining two long legs from the pair of

co-located stations to the third station will have b⃗23 = −b⃗31, and consequently V23 = V ∗
31. Thus,

the bispectrum will be a positive real number, and the closure phase must be zero regardless of the

source structure. These trivial triangles are not useful for imaging, but they provide valuable tests

of the closure phase statistics and systematic bias (e.g., Fish et al., 2016).

Redundant stations also give rise to trivial closure amplitudes which have a value of unity re-

gardless of the source. For instance, if in a set of four stations {1, 2, 3, 4} the stations {1, 2} are

co-located, the numerator and denominator in the closure amplitude A13A24/A14A23 will always

be equal, regardless of the underlying source structure. However, redundant stations also yield

non-trivial closure amplitudes that provide additional information on the source structure. As an

example, one can measure the normalized visibility amplitude,
∣∣∣V (u⃗)/V (⃗0)

∣∣∣, as a closure quantity

on any baseline joining two sets of co-located stations (Johnson et al., 2015). In the limiting case

where every station in an array has a redundant companion, the complete source visibility am-
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SMA/JCMT LMT

ALMA/APEX Trivial Trivial

non-Trivial non-Trivial non-Trivial

Figure 5.1: Example closure amplitudes for a portion of the EHT. Solid red lines connecting stations denote visibil-
ities in the numerator of the closure amplitude; dashed blue lines denote visibilities in the denominator. An array
containing redundant stations (such as SMA/JCMT and ALMA/APEX in the EHT) will produce trivial closure am-
plitudes, which are equal to unity (plus thermal noise), as well as non-trivial closure amplitudes, which yield new
information about the source. Without redundant stations, there would be no closure amplitudes from this portion
of the array.

plitude information could be recovered through closure amplitudes, except for a single degree of

freedom for the total flux density.

Figure 5.1 shows examples of the trivial and non-trivial closure amplitudes for an array with

partial redundancy. As these examples illustrate, redundant stations can significantly inform and

improve calibration and imaging. Figure 5.2 shows the number of closure amplitudes and phases for

the EHT with and without redundant stations as a function of observing hour. The two redundant

stations of the 2017 EHT array more than double the amount of information contained in the set

of closure amplitudes over the same array considered without these stations.

5.1.4 Thermal noise on closure quanধধes

The thermal noise ϵij on the baseline i–j in Equation 5.3 is a circularly-symmetric complex Gaussian

random variable with zero mean that is independently sampled for each visibility measurement.

The standard deviation σij of the thermal noise on this baseline is determined by the radiometer
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Figure 5.2: (Left) Number of independent closure phases for the 2017 EHT over 24 hours GMST while observing
Sgr A*. The blue line shows the total number of independent closure phases in the array containing redundant
stations, the black line shows the number of independent closure phases that measure source structure, and the
red line shows the number of independent closure phases in the array when the redundant stations are excluded.
Redundant stations do not add any closure phase information to the array. (Right) Total independent (blue) and
non-trivial (black) closure amplitudes over 24 hours for the EHT including redundant stations. Unlike for closure
phases, adding only two redundant stations significantly increases the amount of information contained in the set
of independent closure amplitudes compared to the same array without these stations (red) because not all closure
amplitudes containing a baseline between two co-located stations are trivial (see Figure 5.1).

equation (TMS):

σij =
1

η

√
SEFDi × SEFDj

2∆ν∆t
. (5.8)

In Equation 5.8, SEFDi and SEFDj are the “system equivalent flux densities” of the two telescopes.3

The observing bandwidth of the visibility measurement is ∆ν, and ∆t is the integration time. The

factor of 1/η in Equation 5.8 is due to quantization losses in the signal digitization; for the 2-bit

quantization used by the EHT, η = 0.88 (TMS).

When the signal-to-noise ratio (SNR) is high, the visibility amplitudes will also be Gaussian

distributed with standard deviation σij given by Equation 5.8. At lower SNR > 1, the distribution

of the amplitudes becomes non-Gaussian, and the estimate of the visibility amplitude taken directly

from the norm of the complex visibility is biased upward by the noise. To first order, the amplitudes

can be debiased with the equation (TMS)

Aij =

√(
|Vij |2 − σ2ij

)
Θ
(
|Vij |2 − σ2ij

)
. (5.9)

3For a telescope with system temperature Tsys and effective area Aeff, the SEFD is 2kBTsys/Aeff.
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The Heaviside Θ-function in Equation 5.9 ensures that the debiased amplitudes are always real.

In the high signal-to-noise limit, the baseline-based thermal noise on the closure amplitudes

and phases introduced in Section 5.1 will also be Gaussian distributed. To first order, the standard

deviation σB of the complex noise on the bispectrum VB due to the thermal noise on the 3 component

visibilities is (Rogers et al., 1995)

σB, ijk = |VB, ijk|

√
σ2ij

|Vij |2
+

σ2jk

|Vjk|2
+

σ2ki
|Vki|2

. (5.10)

In the high SNR regime, the variance of the phase of a complex quantity X drawn from a circular

Gaussian distribution is σ2Arg[x] = σ2X/|X|2. Thus, the closure phase uncertainty σψ depends only

on the SNR values on the three baselines:

σψ ,ijk =
σB ,ijk
|VB ,ijk|

=

√
σ2ij

|Vij |2
+

σ2jk

|Vjk|2
+

σ2ki
|Vki|2

. (5.11)

The standard deviation σC of the thermal noise of a closure amplitude AC is, to leading order in

the inverse SNRs,

σC ,ijkℓ = AC, ijkℓ

√
σ2ij

|Vij |2
+

σ2kℓ
|Vkℓ|2

+
σ2ik

|Vik|2
+

σ2jℓ

|Vjℓ|2
. (5.12)

To first order the variance on the logarithm of a quantity x is σ2log(x) = σ2x/x
2, so like the closure

phase, the noise on the log closure amplitude is only determined by the component SNRs:

σlog C ,ijkℓ =

√
σ2ij

|Vij |2
+

σ2kℓ
|Vkℓ|2

+
σ2ik

|Vik|2
+

σ2jℓ

|Vjℓ|2
. (5.13)

At moderately low SNR, the Gaussianity of the thermal noise on phase and amplitude breaks

down, as does the appropriateness of using the measured SNR as an estimate of the true SNR when

estimating σψ and σC. Because the measured phase is unbiased by thermal noise and wraps at 2π,
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the true σψ is smaller than the estimate in Equation 5.11 in the low-SNR limit. Low-SNR closure

phases are not prone to extreme outliers, so the Gaussian approximation is reasonable to use over

a broad range of signal-to-noise.

In contrast, the distribution for the reciprocal visibility amplitude, which appears in the de-

nominator of Equation 5.12 for σC , takes on an extreme tail at low SNR that extends to positive

infinity. This tail causes a large positive bias in the measured closure amplitudes, and it gives the

closure amplitude a severely non-Gaussian distribution. Fitting to log closure amplitudes instead

of the closure amplitudes themselves has the dual benefits of mitigating the tail of the reciprocal

amplitude distribution and symmetrizing the numerator and denominator. Furthermore, debiasing

the component visibility amplitudes with Equation 5.9 corrects the estimate of the log closure

amplitude to first order. Detailed analysis of the statistics of closure quantities will be explored in

a forthcoming work (Blackburn et al., 2019).

5.2 RML imaging

5.2.1 Imaging framework

The standard methods of interferometric imaging are based on the CLEAN algorithm (Högbom,

1974; Clark, 1980). CLEAN operates on the so-called “dirty image” obtained by directly taking the

Fourier transform of the sparsely sampled visibilities. To produce an image of the source, CLEAN

attempts to deconvolve the “dirty beam”, or point-spread function that results from incomplete

sampling of the Fourier domain. To perform the initial inverse Fourier transform, CLEAN requires

well-calibrated complex visibilities. When a priori calibration is ineffective – which is often the

case at EHT frequencies where atmospheric phase terms vary rapidly – the visibilities must be
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“self-calibrated”.4

The CLEAN self-calibration procedure starts from an initial model image and solves for the set

of time-dependent complex gains in Equation 5.3 either by fixing a sufficient set of amplitudes or

phases directly from the image and solving for the rest analytically (Wilkinson et al., 1977; Readhead

et al., 1980), or by finding a set that minimizes the sum of squares of the differences between the

measured and model visibilities (Schwab, 1980; Cornwell & Wilkinson, 1981).5 Self-calibration is

often performed in practice by first solving only for the phases of the complex gains, correcting the

amplitudes at a later stage (Cornwell & Fomalont, 1999). At each round of self-calibration, the

estimated inverse gain terms are applied to the measured visibilities, and the imager is run again

to obtain a new source model. These two steps are repeated many times until convergence. There

are several assumptions in this procedure which may affect the final image. Most critical are the

choice of the initial source model (often taken as a point source) and the choice of where to clean

the image in each iteration (the so-called “clean boxes”). These choices enforce assumptions about

the source brightness distribution early on in the self-calibration process which then propagate to

later rounds via the self-calibrated complex visibilities.

In contrast, the various methods of interferometric imaging explored in this paper all fall under

the category of regularized maximum likelihood algorithms. RML methods search for an image

that maximizes the sum of a “data term” that enforces image-data consistency and a “regularizer”

function that prefers images with certain features when the data are not sufficient to constrain

the structure. RML methods can often be interpreted in a Bayesian framework, where the data

term is identified with a log-likelihood and the regularizer term with a log-prior; however, many

regularizing functions do not have straightforward probabilistic interpretations. RML methods
4Although self-calibration is used most frequently with CLEAN, it can be used in conjunction with any

imaging method that requires calibrated complex visibilities.
5This is the strategy adopted in eht-imaging’s self-calibration routines (Section 6.6.1).
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require only a forward Fourier transform from trial images to the visibility domain. Consequently,

they can fit directly to data terms like closure quantities that are derived from the visibilities, even

if the visibilities themselves are corrupted by gain and phase errors.

In astronomy, the most familiar of these RML methods is the Maximum Entropy Method (e.g.,

Frieden, 1972; Gull & Daniell, 1978; Cornwell & Evans, 1985; Narayan & Nityananda, 1986). While

traditional MEM algorithms use calibrated complex visibilities as their fundamental data product,

other algorithms have gone beyond complex visibilities as the fundamental data product to produce

images directly from the image bispectrum. Development of imaging algorithms that use different

fundamental data products from complex visibilities has been particularly fruitful in optical in-

terferometry, where the absolute visibility phase is almost never accessible (e.g., Buscher, 1994;

Baron et al., 2010; Thiébaut, 2013; Thiébaut & Young, 2017), and has also been recently explored

in the context of the EHT (Lu et al., 2014; Bouman et al., 2016; Akiyama et al., 2017b). RML

methods have been developed beyond MEM regularization using regularizers such as the ℓ1 norm

(Honma et al., 2014), image smoothness (Kuramochi et al., 2018), or a data-driven Gaussian patch

prior (Bouman et al., 2016). Regularized maximum likelihood methods have also been extended

to polarization (Ponsonby, 1973; Nityananda & Narayan, 1983; Holdaway & Wardle, 1990; Chael

et al., 2016; Coughlan & Gabuzda, 2016; Akiyama et al., 2017a), to the mitigation of interstel-

lar scattering (Johnson, 2016), and to dynamical imaging to reconstruct movies of time-variable

sources (Johnson et al., 2017; Bouman et al., 2018).

In the most general case, where multiple data terms and multiple regularizers may inform a

reconstruction, RML finds the image I that minimizes an objective function J (I):

J(I) =
∑

data terms
αDχ

2
D (I,d)−

∑
regularizers

βRSR (I) . (5.14)

173



In the above expression, the χ2
D are the data terms or chi-squared goodness-of-fit functions corre-

sponding to the data product d. If the data product d is normally distributed, these are proportional

to the negative log-likelihoods that represent the log probability that the data could be observed

given an underlying image I. For data products whose distributions are not Gaussian (like closure

phases and amplitudes), χ2
D is usually an approximation to the log-likelihood. The SR are regular-

izing functions which provide missing information on the image characteristics and constrain the

space of possible images given the measured data. While relatively new to radio interferometry and

VLBI, reconstructions using Equation 5.14 with multiple data terms and regularizers are common

in optical interferometry (see e.g., Buscher, 1994; Baron et al., 2010; Thiébaut, 2013; Thiébaut &

Young, 2017).

The set of “hyperparameters” αD and βR control the relative weighting of the different edited

data and regularizer terms in the objective function (Equation 5.14). Because the location of the

global minimum of J(I) is unaffected by changes of scale, one hyperparameter can be set to unity or

some other arbitrary value without changing the solution. Furthermore, interpreting the χ2
D data

terms as log-likelihoods, the data term weights αD should ideally be determined by the number of

data points of each type. For example, using the reduced χ2 defined in Section 5.2.2, if one data

term with N1 measurements is to α1, the remaining data terms i > 1 with Ni measurements should

all be set as

αi>1 = αi
Ni

N1
. (5.15)

Often, the data weights αD are varied throughout the imaging process. In particular, heavily

weighting a single data term away from the log-likelihood weighting in Equation 5.15 can aid initial

convergence. The ideal weighting in Equation 5.15 can then be restored in later rounds of imaging.

In practice, the hyperparameters αD and βR are adjusted manually to yield reconstructions
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that converge to the expected values of reduced χ2 ≈ 1 (Cornwell & Evans, 1985). Recently,

Akiyama et al. (2017b) instead determined hyperparameters self-consistently using cross-validation.

In this method, images are reconstructed with different combinations of the hyperparameters using

different data sets where a portion of the data is held in reserve. The set of hyperparameters

that produces the image most compatible with the data held in reserve is then used in the final

reconstruction.

5.2.2 Data terms for robust imaging

Having defined the general form of the objective function, this section details the different choices

of the data χ2 term that can be used in total intensity interferometric imaging. The simplest choice

of image-data consistency metric is the reduced χ2 of the measured visibilities. If there are NV

total measured visibilities Vj (now indexed by their position in the vector V of all measurements,

instead of by their baseline i–j), with associated (real) thermal noise variances σ2j , then the reduced

χ2 is

χ2
vis (I) =

1

2NV

∑
j

∣∣∣Vj − V̂j

∣∣∣2
σ2j

, (5.16)

where V̂j are the sampled visibilities from the Fourier transform of the trial image I on the same

baselines as the measured Vj .

If the visibility phases are significantly corrupted by atmospheric turbulence or other phase errors,

a χ2 term that uses only the visibility amplitudes Aj (debiased by Equation 5.9) can be used:

χ2
amp (I) =

1

NV

∑
j

(Aj − Âj)
2

σ2j
, (5.17)

where Âj =
∣∣∣V̂j∣∣∣.

Because the closure phase is robust to station-based phase errors such as those introduced by at-
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mospheric turbulence, a χ2 term defined on the bispectrum must sometimes be used instead of the

complex visibility χ2
vis (Equation 5.16). If NB is the number of independent bispectrum measure-

ments, and σ2B is the estimated variance on each complex bispectrum measurement (Equation 5.10),

then

χ2
bispec (I) =

1

2NB

∑
j

∣∣∣VB,j − V̂B,j
∣∣∣2

σ2B,j
, (5.18)

where V̂B,j is the sampled bispectrum value corresponding to the trial image I.

Similarly, a χ2 term can also be defined using only the Nψ measured closure phases (typically

Nψ = NB, but trivial closure phases may be dropped from the fit). Defining σ2ψ as the estimated

closure phase variances (Equation 5.11), a natural χ2 term that automatically respects 2π phase

wraps in the difference of measured and trial image closure phases ψ is

χ2
cl phase (I) =

1

Nψ

∑
j

|eiψj − eiψ̂j |2

σ2ψ,j

=
2

Nψ

∑
j

1− cos(ψj − ψ̂j)

σ2ψ,j
, (5.19)

where the ψ̂j are the sampled closure phases from the trial image on the same triangles as in the

set of measurements ψj .

Similarly, a data term that uses only the closure amplitudes is

χ2
cl amp =

1

NC

∑
j

(AC,j − ÂC,j)2

σ2C,j
, (5.20)

where there are a total of NC measured independent closure amplitudes AC,j , the ÂC,j are the cor-

responding sampled closure amplitudes of the trial image, and the σ2C,j are the estimated variances

of the measured closure amplitudes (Equation 5.12).

As discussed in Section 5.1.4, because closure amplitudes are formed from the quotient of visibility
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amplitudes, the noise on the closure amplitudes (Equation 5.6) may be highly non-Gaussian. The

logarithm of the closure amplitude will remain approximately Gaussian at lower SNR, so using the

χ2 of the log closure amplitudes is often a better choice in practice. In this case, the χ2 term is

χ2
log cl amp =

1

NC

∑
j

1

σ2log C,j

(
log AC,j

ÂC,j

)2

, (5.21)

where the variance of the log closure amplitude σ2log C ,j = σ2C ,j/
∣∣AC ,j

∣∣2 (Equation 5.13).

5.2.3 Regularizer terms

This section discusses the primary regularizer terms used in the tests in this chapter and imple-

mented in the eht-imaging software library (Chapter 6). The first regularizer is a simple relative

entropy (Frieden, 1972; Gull & Daniell, 1978; Narayan & Nityananda, 1986) which rewards pixel-

to-pixel similarity to a “prior image” with pixel values Pi:

SMEM = −1

ζ

∑
i

Ii log
(
Ii
Pi

)
. (5.22)

The summation index i runs over all M = m×m pixels in the square image. ζ is a normalization

factor chosen to make the regularizing function independent of the image dimensions, total flux

density, and field of view. For MEM, the units of the quantity inside the sum scale only with the

total flux density f , so ζ = f , where f is fixed before imaging.

In the absence of data, image entropy enforces consistency with the prior image Pi. Another

reasonable choice in the absence of data is to prefer images with sparse brightness distributions.

The simplest way to enforce image sparsity is by using the ℓ1 norm as a regularizing function
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(Honma et al., 2014). The ℓ1 norm is simply the sum of the absolute pixel intensities:

Sℓ1 = −1

ζ

∑
i

|Ii| , (5.23)

where again ζ = f . The simple ℓ1 norm in Equation 5.23 can be extended to prefer similarity

to a prior image Pi or to strongly enforce sparsity in some regions of the image but not others.

Furthermore, because the derivative of Equation 5.23 is not continuous, it may be preferable to

use a smoothed version of the absolute value operator. These extensions to ℓ1 regularization have

been implemented in the SMILI imaging library (Akiyama et al. 2017a,b; Paper IV). While the

simple ℓ1 of Equation 5.23 is implemented in the eht-imaging library and was used in the EHT

data reconstructions presented in Chapter 7, the remaining reconstructions in this chapter do not

use ℓ1.

The next regularizer is an isotropic total variation (TV) term that pushes the final image to

favor pixel-to-pixel smoothness. Specifically, TV is an ℓ2 norm on the image gradient; it favors

piecewise-smooth images with flat regions separated by sharp edges (Rudin et al., 1992):

STV = −1

ζ

∑
l

∑
m

[
(Il+1,m − Il,m)

2 + (Il,m+1 − Il,m)
2
]1/2

, (5.24)

where in the above equation the two sums are taken over the two image dimensions and the image

pixels Il,m are now indexed by their position (l,m) in the 2D m×m grid. Because Equation 5.24

contains finite differences between neighboring pixel intensities, the normalization factor ζ depends

on the pixel size ∆θ relative to a standard image size, here taken as the interferometer beam θbeam.

In particular, ζ = f(∆θ/θbeam). It should be noted that the total variation in Equation 5.24 is not

everywhere differentiable, so care must be taken when using it in imaging. Thiébaut & Young (2017)

present a differentiable hyperbolic form of an edge-preserving smoothness regularizer (Charbonnier
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et al., 1997) which approximates TV when the image is far from being smooth (i.e., when STV is

large).

The reconstructions described in Section 5.4.2 use a “Total Squared Variation” (TSV) regular-

izer instead of TV. While still promoting image smoothness, TSV prefers smooth edges over the

piecewise smooth patches favored by TV (Kuramochi et al., 2018). This property implies TSV may

be more appropriate for astronomical image reconstruction. The TSV regularizer term is formed

by squaring each of the terms in the sum in Equation 5.24:

STSV = −1

ζ

∑
l

∑
m

[
(Il+1,m − Il,m)

2 + (Il,m+1 − Il,m)
2
]
. (5.25)

The normalization factor for TSV is ζ = f2 (∆θ/θbeam)4.

The remaining regularizers constrain image-averaged properties. First, because closure ampli-

tudes are independent of the normalization of the image, reconstructions made with only closure

data require a constraint on the total image flux density. This constraint can be implemented as a

regularizer term:

Stot flux = −1

ζ

(∑
i

Ii − f

)2

, (5.26)

where the sum is again over the total M pixels in the image, and f is again the total source flux

density, considered to be known a priori (e.g., by a simultaneous measurement of the source by a

flux-calibrated single station). The normalization factor ζ = f2.

Next, because closure phase does not constrain the position of the image centroid, it is helpful

to include a regularizing constraint to center the image in the chosen field of view:

Scentroid = −1

ζ

(∑
i

Iixi − fδx

)2

+

(∑
i

Iiyi − fδy

)2
 , (5.27)

179



where (xi, yi) is the coordinate of the ith pixel and the desired image centroid position is (δx, δy).

In the eht-imaging library, Scentroid pushes the image center of brightness to the frame center,

(δx, δy) = (0, 0), by default. The normalization factor for the centroid constraint is ζ = f2θ2beam.

When only closure phases and closure amplitudes are used in the reconstruction, both the centroid

and the total flux density are completely unconstrained by data. Thus, in this case almost any

amount of weight on Stot flux and Scentroid should guide the final image to a centered image with the

specified total flux, and the precise weighting of these terms relative to the data is not as significant

in informing the final image as the relative weighting of the other regularizing terms.

The regularizers presented above are used for all of the data sets imaged in this chapter, but their

relative weighting (the βR terms in Equation 5.14) and the prior image used in SMEM (Equation 5.22)

are adjusted based on the data set considered. However, when comparing images produced with

different data terms, the same prior image and relative regularizer weightings were used in the

different reconstructions to produce fair comparisons (see Table 5.3).

5.3 “Superresoluধon”

Both RML and CLEAN are nonlinear methods that input some amount of prior information into

the imaging process. Thus, one might reasonably expect these methods to produce some degree of

image “superresolution,” or the production of image features on scales less than the array nominal

resolution θmin = λ/bmax, where bmax is the length of the longest baseline in the VLBI array. In the

context of MEM, it is a frequently quoted result that the method has a superresolution factor of

1/4 the nominal resolution (Narayan & Nityananda, 1986). This fact is a consequence only of the

analyticity of the data (not on the specific choice of prior or formulation of the “entropy” term), but

the derivation of this factor requires the assumption of infinite signal-to-noise (Holdaway, 1990). In
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practice, the superresolution factor may be informed by both the analyticity of the data (degraded

by noise) and the choice of regularizing function(s).

This section demonstrates RML’s capacity for “superresolution” by comparing RML reconstruc-

tions using only the simple entropy regularizer SMEM (Equation 5.22) to CLEAN reconstructions

from simulated Sgr A∗ data with thermal noise from the EHT 2017 array. For this simple test,

the effects of inaccurate amplitude calibration, atmospheric phase corruption, and interstellar scat-

tering toward Sgr A∗ were neglected. The RML algorithm used full complex visibilities (with

calibrated phase information) via the χ2 term in Equation 5.16. This choice, while infeasible in

practice for EHT data due to phase errors, allows the RML images to be directly compared to the

CLEAN reconstructions without self-calibration.

The RML and CLEAN reconstructions from the same calibrated data were convolved with a

sequence of Gaussian kernels scaled from the elliptical Gaussian fitted to the Fourier transform of

the (u, v) coverage (the “clean beam”). Each of these restored reconstructions was then compared

to the ground truth image using the normalized root-mean-square error (NRMSE) metric. The

NRMSE is a point-to-point metric that evaluates images based on pixel-to-pixel similarities rather

than common large-scale features. Given two images A and B with M pixels each, the NRMSE of

image A relative to B is

NRMSE(A,B) =

√∑M
i=1(Ai −Bi)2√∑M

i=1B
2
i

. (5.28)

In computing the NRMSE of the CLEAN reconstructions, the dirty image residuals were not

added back to the convolved model. After tuning the CLEAN reconstruction parameters for this

image, the total flux left in the residuals was less than 2% of the total image flux. The CLEAN

reconstruction used Briggs weighting and a loop gain of 0.025, with the rest of the parameters set

to the default in the algorithm’s CASA implementation.6

6http://casa.nrao.edu/docs/TaskRef/clean-task.html
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Figure 5.3: (Left) Normalized root-mean-square error (NRMSE, Equation 5.28) of RML (using an entropy regular-
izer, and here called MEM) and CLEAN reconstructed images as a function of the fractional restoring beam size.
For comparison, the NRMSE of the blurred model image is also plotted. The reconstructed images were produced
using simulated data from the EHT array; for straightforward comparison with CLEAN, realistic thermal noise was
added to the simulated visibilities but gain calibration errors, random atmospheric phases, and blurring due to in-
terstellar scattering were all neglected. The images were convolved with scaled versions of the fitted clean beam.
The minimum for each NRMSE curve indicates the optimal restoring beam, which is significantly smaller for MEM
(25% of nominal) than for CLEAN (78% of nominal). (Right) Example reconstructions restored with scaled beams
from curves in the left panel. The center-left panels are the MEM and CLEAN reconstructions restored at the
nominal resolution, with the fitted clean beam. The center-right panels show the reconstructions restored with the
optimal beam for the CLEAN reconstruction and the far right panels show both reconstructions restored with the
optimal MEM beam.

The results of this experiment are displayed in Figure 5.3. The left panel indicates that the

RML image’s curve of NRMSE with restoring beam size has a minimum at a significantly smaller

beam size than the CLEAN reconstruction, demonstrating a superior ability to superresolve source

structure. Furthermore, the absolute value of NRMSE from the MEM reconstruction is consistently

lower than that from CLEAN for all values of the restoring beam size. Most importantly, while the

CLEAN curve’s NRMSE increases rapidly for restoring beams smaller than the optimal resolution,

the RML image fidelity is relatively unaffected by choosing a restoring beam that is too small.

Choosing a restoring beam that is too large produces an image with the same fidelity as the model

blurred to that resolution. The right panel of Figure 5.3 shows the model image, the interferometer

“clean” beam, and the reconstructions blurred with the nominal clean beam and the measured

optimal beams. In addition to lower resolution and fidelity, the CLEAN reconstructions show

prominent striping features from isolated components being restored with the restoring beam.

While Figure 5.3 demonstrates that in this case the MEM reconstruction has superior resolution
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and fidelity to the CLEAN reconstruction, the optimal fractional restoring beam size for the CLEAN

reconstruction is still less than unity. This result was observed in several similar reconstructions,

suggesting that shrinking the restoring beam used in CLEAN reconstructions to 75% of the nominal

fitted beam can enhance resolution without introducing imaging artifacts, at least on images of

compact sources similar to those used in this test.

Repeating the exercise of Figure 5.3 with observations taken with increased or decreased signal-

to-noise ratio resulted in NRMSE curves that were only slightly higher and lower than the curves

in Figure 5.3, but shared the same form – in particular, the location of the minimum NRMSE

values barely shifted. This insensitivity to additional noise is likely due to the overall high SNR

of the original synthetic observations, which had an average SNR of 178 and a minimum SNR of

13. These results show that with a high average SNR, increasing or decreasing the noise by up to

an order of magnitude does not significantly affect the image reconstruction. Observations with an

average SNR ∼ 1, on the other hand, may show a drastic change in quality with small adjustments

to the noise level.

5.4 Tesধng RML imaging with closure quanধধes

This section tests the effects of using different combinations of the data terms in Section 5.2.2

in RML imaging of simulated EHT data. Observations were simulated from model images and

corrupted with different amounts of uncertainty in the complex station gains Gieiϕi (Equation 5.3).

Images from these data were then reconstructed using different data term combinations and the

regularizers as described in Section 5.4.2. While data terms more complicated than complex vis-

ibilities have been used in past optical (e.g., Thiébaut & Young 2017) and radio (e.g., Honma

et al. 2014; Bouman et al. 2016) image reconstructions, this test (first published in Chael et al.
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Table 5.1: EHT 2017 station parameters used in the imaging tests in Section 5.4.

Facility Location Diam. (m) SEFD (Jy) X (m) Y (m) Z (m)
JCMT Maunakea, Hawai‘i 15 6000 -5464584.7 -2493001.2 2150654.0
SMA Maunakea, Hawai‘i 7(×6) 4900 -5464555.5 -2492928.0 2150797.2
SMT Mt. Graham, Arizona 10 5000 -1828796.2 -5054406.8 3427865.2
APEX Atacama, Chile 12 3500 2225039.5 -5441197.6 -2479303.4
ALMA Atacama, Chile 40(×12) 90 2225061.2 -5440057.4 -2481681.2
SPT South Pole 10 5000 0.01 0.01 -6359609.7
LMT Sierra Negra, Mexico 50 600 -768715.6 -5988507.1 2063354.9
PV Pico Veleta, Spain 30 1400 5088967.8 -301681.2 3825012.2

2018b) represents the first demonstration of full closure-only imaging with no calibrated amplitude

or phase information.

The imaging framework described in Section 5.2, including all of the data terms introduced in

Section 5.2.2 and the regularizers in Section 5.2.3, is implemented in the eht-imaging software

library (Chael et al., 2016, 2018b).7 Chapter 6 discusses the structure and capabilities of the

eht-imaging library in more detail.

5.4.1 Models and syntheধc data

Simulated data were generated on EHT baselines from several 230 GHz model images at the

positions of the EHT’s primary science targets: Sgr A∗ (RA: 17h 45m 40.04s, DEC: −29◦ 0′

28.12′′) and M87 (RA: 12h 30m 49s.42, DEC: +12◦ 23′ 28.04′′). The model images were generated

by performing general relativistic ray tracing and radiative transfer on the density and temperature

distributions from two previously published GRMHD simulations of hot supermassive black hole

accretion disks (specifically, Mościbrodzka et al., 2016b; Gold et al., 2017). Data were also simulated

from a 7 mm VLBA image of the quasar 3C273 (Jorstad & Marscher, 2016) rescaled to a smaller

FOV of 250µas and “observed” at the sky location of Sgr A∗.
7In particular, these tests used a version of the eht-imaging library from 2017, available in static form at

https://zenodo.org/record/1173414
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Figure 5.4: (Left) EHT 2017 (u, v) coverage for Sgr A∗. The “redundant” (JCMT and APEX) stations make prac-
tically no unique contributions to the (u, v) coverage or nominal resolution aside from adding an effective zero
baseline. However, these stations add closure amplitudes that are essential for closure amplitude imaging to ap-
proach the fidelity of imaging with visibility amplitudes. (Right) EHT 2017 (u, v) coverage for M87. Because the
SPT cannot observe M87, the 2017 EHT has lower resolution on M87 than Sgr A∗.

The EHT stations that observed in 2017 are the Atacama Large Millimeter/Submillimeter Array

(ALMA), the Large Millimeter Telescope (LMT), the Submillimeter Array (SMA), the Submillime-

ter Telescope (SMT), the Institut de Radioastronomie Millimétrique (IRAM) telescope on Pico

Veleta (PV), the IRAM Plateau de Bure Interferometer (PdB), and the South Pole Telescope

(SPT). The EHT’s station parameters are listed in Table 5.1.8 In addition to the full EHT array

described in Table 5.1, data were also sampled from a reduced array without the “redundant” sites

JCMT and APEX. The (u, v) coverage maps for the 2017 EHT when observing Sgr A∗ and M87

are displayed in Figure 5.4.

In all cases, the integration time ∆t = 30s and the bandwidth ∆ν = 2GHz, with scans taken

every 5 minutes for a full 24 hour rotation of the Earth. The zenith opacity was set to τ = 0.15

at all stations with no uncertainties in the opacity calibration. Neither the effects of refractive or

diffractive interstellar scattering were included in simulated Sgr A∗ data (see e.g., Fish et al. 2014;
8Note that these parameters, in particular the SEFDs, are based on estimates made before the 2017

observations and so do not match the final numbers reported in Table 2 of Paper III.
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Johnson 2016).

To test the quality of the different imaging methods on data with different levels of gain uncer-

tainty, after adding thermal noise to the data, random gain terms were generated at seven different

levels of uncertainty – 0%, 5%, 10%, 25%, 50%, 75%, and 100%. To corrupt the synthetic data with

different levels of gain error, different time-dependent station-based complex gains were sampled

from known underlying distributions with increasing variance. Because the atmospheric coherence

time which determines the additional phase ϕi added at each station is much shorter than a typical

observing cadence at 1.3 mm, the phases were drawn from a uniform distribution over −π < ϕi < π

at each scan, independent of the uncertainty in the amplitude.

The prescription for the amplitude gain terms consisted of a random time-independent offset and

a fluctuating part:

|Gi| =
√

(1 +Xi)(1 + Yi(t)), (5.29)

where Xi and Yi are real Gaussian random variables with zero mean, but Xi is drawn only once

per telescope per observation and Yi is drawn independently at each time when (u, v) points are

sampled. For simplicity, the underlying Gaussian distributions of Xi and Yi had identical standard

deviations, and this standard deviation labels the reported level of gain error (e.g., 5%, 10%, 15%).

Once computed at different levels of gain error, the random sets of station-based gains were added

to the ideal visibilities after adding Gaussian thermal noise according to Equation 5.3. To preserve

the signal-to-noise ratio, the reported noise standard deviation terms σij from Equation 5.8 were

multiplied by the same gain factors Gi and Gj .

The source elevation angle and atmospheric opacity τ also affect the signal-to-noise at each

station. The opacity attenuates the measured perfect visibility Vij (before adding thermal noise)

by a factor
√

e−τi/ sin θie−τj/ sin θj , where θi and θj are the elevation angles of the source at the
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Table 5.2: Initial/Prior image parameters for the imaging tests in this section.

Image (u, v) coverage FOV (µas) Gaussian FWHM Flux (Jy)(µas)
Figure 5.5 Sgr A∗ 135 60 2
Figure 5.6 M87 155 60 2
Figure 5.7 Sgr A∗ 375 25 2

Table 5.3: Imaging algorithm parameters for the tests in this section.

Round fblur βMEM βTSV βtot flux βcentroid α1 fα2 Niter
1 N/A 1 1 100 100 100 2 50
2 0.75 1 50 50 50 100 0.75 150
3 0.5 1 100 10 10 100 0.5 200
4 0.33 1 500 1 1 100 1 200

different telescopes. This attenuation factor can be corrected by multiplying the measured visibility

(including thermal noise) by its inverse using the measured opacity, keeping the reduced signal-to-

noise constant. In general, the imperfect measurement of opacities introduces an additional source

of amplitude gain error. For the purposes of this chapter, simulated data assumes the perfect

measurement of opacities and sets all zenith opacities τi = 0.15.

Note that the procedure used for this test is a simplified version of the full eht-imaging procedure

for synthetic data generation, which includes the effects of polarimetric leakage with a Jones matrix

formalism. The full eht-imaging procedure for synthetic data generation is described in Appendix C.

5.4.2 Imaging procedure

To aid in convergence and help the minimizer avoid local minima in the objective function, each

imager was run multiple times for each dataset, substituting a version of the image produced by

the previous convolved with a circular Gaussian as the next initial image. This procedure smooths

out spurious high-frequency artifacts that the imager will not remove on its own given a lack of

high-spatial-frequency data constraints. Each time the imager restarts, the eht-imaging script also

adjusts the various hyperparameters αD and βR in Equation 5.14. The prescriptions for each data
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set are presented below (in Table 5.2), but in general the approach is to generally increase the

weight on the smoothness regularizer term to suppress the emergence of spurious high-frequency

artifacts. The script also usually begins by weighting the closure phase data term more heavily in

the reconstruction than is supported by the log-likelihood interpretation (Equation 5.15); typically,

minimizing the closure phase χ2 is the most helpful in constraining the overall image structure in

early rounds of imaging. As the imager progress to later rounds, it restores the relative data term

weighting to that given by Equation 5.15.

Every reconstruction used a 128× 128 pixel grid. In each case, the objective function to be mini-

mized (Equation 5.14) used one of four different data term combinations: the visibility bispectrum

(Equation 5.18), visibility amplitude and closure phase (Equation 5.17 and 5.19), closure amplitude

and closure phase (Equation 5.20 and 5.19), and log closure amplitude and closure phase (Equa-

tion 5.21 and 5.19). All reconstructions used the same four regularizer terms from Section 5.2.3:

Maximum Entropy (Equation 5.22), Total Squared Variation (Equation 5.25), a total flux density

constraint (Equation 5.26), and a centroid constraint (Equation 5.27). The initial/prior image was

a circular Gaussian in all cases. The total flux densities, fields of view, and initial image Gaussian

FWHMs are given in Table 5.2.

The parameters that specify the imaging procedure are listed in Table 5.3. As described in

Section 5.4.2, the datasets were imaged in multiple rounds, blurring out the final image from a

given round to serve as the initial image in the next. The FWHM of the circular Gaussian blurring

kernel used is reported as a fraction fblur of the nominal array resolution. The other imaging

parameters listed in Table 5.3 include the data term and regularizer hyperparameters, αD and βR.

For the data terms, in each case α1 is the hyperparameter for the amplitude term (bispectrum,

visibility amplitude, closure amplitude, or log closure amplitude), and α2 is the hyperparameter

for the closure phase term, if present. To capture this variation of α2 with imaging round, α2 is
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parametrized by its ratio fα2 with the ideal log-likelihood ratio given by Equation 5.15. That is, if

there are N1 measurements of the first (amplitude) data product and N2 measurements of of the

second (phase) data product,

α2 = fα2 α1
N2

N1
. (5.30)

Finally, Table 5.3 also lists the maximum number of imager steps allowed in each round, Niter.

5.4.3 Image evaluaধon

In evaluating the performance of the imaging algorithms with different data terms, the fidelity of the

reconstructed images was assessed with the NRMSE metric introduced in Section 5.3. However, sev-

eral factors complicate the simple application of Equation 5.28 in evaluating images reconstructed

from closure quantities. First, often the true source image will contain fine-scale features that are

at too high a resolution for any image reconstruction algorithm to capture given the longest pro-

jected baseline in the (u, v) plane. To prevent NRMSE from unduly penalizing reconstructions that

successfully reconstruct the lower resolution features in the data, both the true and reconstructed

images were convolved with a Gaussian kernel to blur out high-frequency structure. Since RML

algorithms should provide some “super-resolution” above the scale corresponding to the longest

projected baseline (Section 5.3), this kernel was chosen to have the same proportions as the inter-

ferometer “clean” beam – the Gaussian fitted to the central lobe of the Fourier transform of the

(u, v) coverage – but with a beam size scaled down by a factor of 1/3.

A second complication arises because images reconstructed without calibrated visibility phases

are not sensitive to the true position of the image centroid in the field of view, so reconstructed

images may be offset from the true source location. In addition, the number of pixels and field of

view in the reconstructed image may be different from those in the true source image. Therefore,
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when comparing images, the images were first resampled onto the same grid as the model image

using cubic spline interpolation and then shifted to produce the maximal image cross-correlation

before computing the NRMSE with Equation 5.28.

5.4.4 Results

The results are displayed in Figures 5.5, 5.6, and 5.7. Each Figure shows the initial model image,

the initial model image blurred with a “clean” beam scaled to 1/3 of its fitted value, and the

reconstructions from each method for each level of gain uncertainty, all blurred with the same beam.

In the upper right, these Figures also display a plot showing the normalized root-mean-square error

(Equation 5.28) for each method as a function of the level of gain error in the underlying dataset.

These results indicate that, as long as some redundant stations are included to constrain the

reconstruction with “trivial” closure phases and amplitudes, closure-only imaging of EHT data can

achieve fidelities nearly as good as bispectral or amplitude + closure phase imaging. As the level of

amplitude gain error increases, the fidelity of the results produced using the bispectrum or visibility

amplitudes drops quickly, while closure-only imaging is completely insensitive to gain error.

Figures 5.5–5.7 show that imaging with closure amplitudes directly can produce results that

are slightly more faithful to the underlying image than reconstructing the image with log closure

amplitudes. However, imaging with the closure amplitudes often takes much longer to converge, and

it is more sensitive to the particular choices of data term weight and initial field of view. Choosing

the weights and field of view incorrectly can cause the reconstruction using closure amplitudes to

converge to an incorrect local minimum in its complicated energy landscape, while the log closure

amplitude χ2 term results in good images for a larger range of the parameter space.

Finally, for the narrow, high dynamic range 3C279 image in Figure 5.7, the NRMSE was com-

puted using the logarithm of the image. This choice results in a range of NRMSE values for the
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Figure 5.5: (Top left) 230 GHz image from a GRMHD simulation of Sgr A∗ (Gold et al., 2017). (Top middle) the
same image blurred with the effective beam (solid ellipse), 1/3 the size of the fitted CLEAN beam (open ellipse).
The image was observed at the sky location of Sgr A∗ using EHT 2017 baselines, and images were reconstructed
with each method using the parameters in Table 5.3. (Top right) Curves of NRMSE (Equation 5.28) versus gain
error for each reconstruction method. (Bottom) individual reconstructions from each method (y-axis) at each
level of gain error (x-axis), blurred with the same beam as the model in the upper middle pane. The images and
NRMSE curves show that except at the lowest levels of amplitude gain error, the closure-only results are as faithful
to the model as the reconstructions that use either the bispectrum or visibility amplitudes and closure phases. Fur-
thermore, the results of the closure-only methods are insensitive to the overall level of amplitude gain error, while
the reconstructions using visibility amplitude information fail starting at the 10% level of gain error.
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Figure 5.6: Reconstructions of a 230 GHz image from a GRMHD simulation of the M87 jet (Mościbrodzka et al.,
2016b). As in the Sgr A∗ image in Figure 5.5, closure-only methods produce results that are as good or better
than the bispectrum or visibility amplitude + closure phase methods in all but the zero gain error case, and the
closure-only results are consistent at all levels of gain error. In contrast, the methods that rely on calibrated ampli-
tudes begin to fail at the 10% level of gain error.
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Figure 5.7: 43 GHz VLBA image of 3C 273 from Jorstad & Marscher (2016), scaled to a 250 µas field of view. Sim-
ulated data were generated using the 230 GHz EHT 2017 Sgr A∗ (u, v) coordinates and sensitivities (Figure 5.4).
Unlike the other images in this section, this image is displayed with a log scale, and the NRMSE was computed
from the log of the image. The closure-only reconstructions again capture the overall jet structure at all levels of
amplitude gain error. With no gain error, imaging directly with closure amplitudes (or log closure amplitudes) in-
stead of visibility amplitudes provides less dynamic range, as is evident from the spurious low-luminosity off-axis
features in the closure-only reconstructions.
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bispectrum and visibility amplitude + closure phase images that is substantially lower than those

in Figures 5.5 and 5.6. However, visual inspection of the images shows that in this case, as in Fig-

ures 5.5 and 5.6, imaging methods that rely on calibrated amplitudes perform significantly worse

with increasing gain error and completely fail with amplitude gain error levels >10%. In contrast,

the closure-only methods have consistent performance at all levels of amplitude gain. However, the

final dynamic range achieved in the closure-only reconstructions is worse than in the images pro-

duced with visibility amplitudes with zero gain error, as is evident from the spurious low-luminosity

features in the closure-only reconstructions in Figure 5.7. These features parallel to the jet axis

result from a local minimum of the objective function, which is invariant to overall image shifts.

Since there are no data constraints on certain spatial frequencies due to sparse coverage, these

Fourier components can be made large through periodic structure without increasing χ2. Defining

a masked region along the jet axis outside which the flux is zero (analogous to a CLEAN box) may

help remove these features.

Figure 5.8 compares reconstructions using data from the full EHT 2017 array and the 2017

array without “redundant” stations. In both cases, closure-only methods converge to the same

image for all values of systematic gain error. However, without redundant stations the results are

substantially less accurate; when using a redundant stations in the dataset, the closure-only results

approach the fidelity of images produced with gain-calibrated amplitudes. “Redundant” stations

contribute important short baselines that combine into nontrivial closure amplitudes and act to

further constrain the underlying image (Section 5.1.3). In other words, the closure-only images

approach the bispectrum or amplitude + closure phase images in quality as the number of closure

amplitudes increases, even if some of those closure quantities contain zero-baseline measurements

from co-located stations.
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Figure 5.8: (Top) Image fidelity with the EHT 2017 array. The left panel shows NRMSE curves of image fidelity
for reconstructions of the model in Figure 5.5 with different levels of gain error. The curves are styled consistently
with those in Figures 5.5–5.6. The right image is the log closure amplitude + closure phase reconstruction pro-
duced at 100% gain error. (Bottom) Image fidelity with the EHT 2017 array without redundant stations (JCMT,
APEX). The reconstructions from data without the redundant stations are still insensitive to different levels of
gain error, but their overall fidelity is worse compared with those produced from data including these redundant
stations.

5.5 VLBA and ALMA closure images

To test its performance on real observations, this section applies closure quantity imaging algorithms

on millimeter-wavelength interferometric datasets from the VLBA and ALMA. In both cases, the

number of visibilities and closure quantities greatly exceeds the number produced by the sparse

EHT 2017 array.

Figure 5.9 compares CLEAN and closure-only RML imaging of a VLBA observation of M87 at 7

mm wavelength. In this case, and for other images with jets or narrow structure (see Figure 5.7), a

major difficulty in closure-only imaging is convergence in the minimization of the objective function

(Equation 5.14). When the algorithm is initialized with an uninformative image, the algorithm has
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CLEAN w/ Self-Cal

1 mas

Closure Imaging

Closure Imaging w/ Self-Cal

Figure 5.9: Application of closure-only imaging to a VLBA observation of M87 at 7mm wavelength observed on
May 9, 2007 (for details, see Walker et al., 2016, 2018). (Top) CLEAN image made using iterative imaging and
self-calibration. (Center) image reconstructed using closure-only imaging with a weak visibility amplitude constraint
to aid initial convergence. (Bottom) image reconstructed using complex visibilities after self-calibrating to the
closure-only image. To simplify the comparison between these approaches, each image has been convolved with
the same CLEAN restoring beam and each image is rescaled to have the same total flux density as the CLEAN
image. Contours in all panels are at equal levels, starting at 9.7 mJy/mas2 (=1 mJy/beam) and increasing by
factors of 2.
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difficulty converging to an image that has a reduced chi-squared near 1 in either the closure phases

or the log closure amplitudes.

To mitigate this problem while still preserving the benefits of only using closure quantities,

initially including the poorly-calibrated visibility amplitudes in the minimization with a low weight

can significantly aid the initial convergence. To avoid any bias from the initial calibration, this

test first assumed a “null” calibration with a single, constant SEFD (see Equation 5.8) for all sites

and all times. The RML algorithm used closure quantities and these minimally-calibrated visibility

amplitudes, with the visibility amplitude χ2 term down-weighted by a factor of 10 relative to the

closure quantities. The imaging script then performed another two rounds toward convergence,

initializing to the previous image convolved with a circular Gaussian matching the nominal array

resolution, but with visibility amplitudes this time down-weighted by a factor of 100. Finally, the

last two rounds of imaging used only closure quantities and no visibility amplitudes.

Figure 5.9 compares the reconstructed image to an image reconstructed using CLEAN and itera-

tive self-calibration (Walker et al., 2016, 2018). The self-calibrated gains from the final closure-only

image are significantly different than the initialized “null” calibration solution; after normalizing to

the median gain (effectively fixing the total flux density), although 50% of visibilities had residual

gain corrections of less than 3%, 10% of the visibilities had residual gain corrections of more than

30%. This result justifies post-hoc the choice to use visibility amplitudes in the initial minimization

steps. The majority of uncalibrated amplitudes have low error compared to the final self-calibrated

set, so they are useful in aiding convergence; however, relying primarily on closure amplitudes

ensures a final image that is less affected by the large outlier gain errors present on some baselines.

For comparison, the derived self-calibration solution was also applied to the data and used to

produce an RML image with the self-calibrated complex visibilities (minimizing Equation 5.14 with

a standard complex visibility χ2 term, Equation 5.16). The result is displayed in the third panel of
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Figure 5.9. All three methods in Figure 5.9 give results that are broadly consistent, demonstrating

the potential of closure imaging to obtain images that are comparable to those obtained by multiple

rounds of finely-tuned CLEAN and self-calibration from an expert user.
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Figure 5.10: (Top) 1.3 mm band 6 ALMA image of the protoplanetary disk around HL Tau, comparing the CLEAN
reconstruction from ALMA Partnership et al. (2015) with reconstructions from RML using closure quantities. The
leftmost panel shows the CLEAN image with a FOV of 1.8′′. The center panel shows an image of the same data
produced by directly fitting to log closure amplitudes and closure phases, with downweighted visibility amplitudes
used in the initial steps to aid convergence. Closure-only imaging produces an image that is consistent with the
CLEAN result, despite not using any multi-scale imaging, but the overall resolution is lower. The rightmost panel
shows an image produced from complex visibilities using a strong total variation regularizer after self-calibrating
the data to the center closure-only image. After self-calibration, complex visibility imaging with total variation
produces a sharp image with distinct disk gaps. (Bottom) 0.87 mm band 7 ALMA images, produced using the
same imaging parameters as the top 1.3 mm images. The 0.87 mm image obtained after closure-only imaging
and one round of self-calibration eliminates prominent clean artifacts (dark spots) present in the original image.
The 0.87 mm image is similar to recently reprocessed images using CLEAN and a modified self-calibration loop
(Akiyama et al., 2016).

With 64 telescopes, ALMA has baseline coverage that much more densely fills the (u, v) plane

than the EHT and VLBA observations considered above. Figure 5.10 displays CLEAN images of

a 2014 ALMA observation of the HL Tau protoplanetary disk taken both at 1.3 mm and 0.87 mm
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(ALMA Partnership et al., 2015) as well as RML reconstructions with only log closure amplitude and

closure phases. To produce RML reconstructions of this large data set, the data were first averaged

in five minute intervals. As in the 3 mm VLBA reconstructions of the M87 jet (Figure 5.9),

downweighted visibility amplitudes were used to help aid convergence in the initial steps of the

minimization; the poorly-calibrated amplitudes were removed from the objective function in the

final runs of the imager.

Figure 5.10 demonstrates that closure imaging is able to replicate the overall structure of the

published CLEAN images of HL Tau, including all of the ring gaps in the protoplanetary disk

identified by the original reconstruction. However, the eht-imaging library does not yet include

multi-scale imaging (Wakker & Schwarz, 1988; Cornwell, 2008), which was necessary to produce

the detailed structure in the CLEAN image. After producing an image from closure quantities,

the data were self-calibrated to the resulting image (center panel of Figure 5.10) and imaged again

directly using the resulting complex visibilities (minimizing Equation 5.14 with Equation 5.16).

The resulting image has a higher resolution than the closure-only image alone, with sharper and

more distinct gaps apparent in the disk (right panel of Figure 5.10). Furthermore, particularly in

the 0.87 mm image, the final reconstruction lacks the prominent periodic dark spots present in

the CLEAN image. These artifacts are likely caused by prominent dirty beam sidelobes resulting

from amplitude miscalibration; they were also ameliorated in recently reprocessed CLEAN + self-

calibration images by Akiyama et al. (2016).

5.6 Discussion

The results in Section 5.4.4 and Section 5.5 demonstrate that closure amplitudes and phases can

be directly used in interferometric imaging to produce images that are insensitive to phase and
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amplitude calibration errors. Traditional self-calibration and imaging loops require many iterations

of CLEAN imaging and fitting complex gains to visibilities. These loops contain many tunable

parameters, including the choice of initial source model, the strategy for independent or concurrent

calibration of amplitude and phase gains, the CLEAN convergence criterion, the choice of taper and

weighting for the CLEAN visibilities, and the scales and regions to clean in each CLEAN iteration.

Closure-only imaging does not remove all tunable parameters from the model, but imaging with

closure quantities alone necessarily produces results that are less biased by calibration assumptions.

Images from closure imaging can stand on their own as minimal assumption estimates of the source

structure; alternatively, results from closure-only imaging may be used as a well-motivated self-

calibration model or initial source image for other imaging pipelines using calibrated data. On the

ALMA and VLBA datasets in Section 5.5, just one round of self-calibration to an image produced

with closure quantities can be used to produce smooth high-resolution images that match the best

iterative, multi-scale CLEAN + self-calibration results.

The most significant challenge in closure-only imaging is a difficulty in the early convergence

and a tendency to quickly get stuck in wildly incorrect local minima. Counterintuitively, this

tendency seems to be more of a problem in datasets with more interferometric baselines. This

limitation may arise because the energy landscape represented by the closure amplitude terms

(Equation 5.20) becomes increasingly complicated with more correlated closure data. When using

simulated data from the sparse EHT array (Section 5.4.4), using closure quantities alone with

a reasonable Gaussian prior and several imaging iterations is enough to guide the algorithm to

converge on a reasonable image. However, imaging the real datasets from ALMA and the VLBA

in Section 5.5 with closure quantities alone and an uninformative initial model was difficult. For

these cases, adding a weak data constraint using uncalibrated visibility amplitudes (Equation 5.17)

helped guide the minimizer to the region of a good local minimum. This constraint can be as
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low as 1-10% of the closure amplitude χ2 term and still produce excellent results. As the imaging

proceeds, the weak amplitude constraint is removed, allowing the final image to be only guided

by the closure amplitudes and phases. Given the robustness of the results in Figures 5.9 and 5.10

to different choices of regularizer and data weights, there is significant promise for this method to

eventually allow for unsupervised closure imaging that can blindly produce a calibration-free image

from decent initial data without user intervention.

A general characteristic of the closure-only images in Section 5.4.4 and Section 5.5 is their

tendency to avoid high-frequency artifacts when highly converged. By removing spurious features

from CLEAN images, closure methods could thus be useful in providing maximally conservative

results. However, note the CLEAN reconstruction in Figure 5.9 recovers more extended structure

along the jet than the closure-only solution, and the closure-only images of HL Tau in FIgure 5.10

show much less fine structure than the original CLEAN images. The additional features in the

CLEAN images could be a result of the multi-scale approach used in both cases (Wakker & Schwarz,

1988; Cornwell, 2008), but a simpler explanation is just that the CLEAN reconstructions have

access to more information in their self-calibrated data sets. However, errors in the self-calibration

solution introduce artifacts in the CLEAN results, such as the depressions seen in the 0.87 mm

image of HL Tau in Figure 5.10. Self-calibrating to a robust closure-only model recovers the

reliable high-spatial-frequency data in the complex visibilities without introducing calibration errors;

a process of closure-only imaging plus self-calibration can thus result in images that are both

more reliable and higher resolution than the traditional CLEAN reconstructions. Going forward,

implementing multi-scale RML approaches will further improve the imaging methods presented in

this chapter.

The eht-imaging library used in this chapter provides flexible framework where images can be

easily produced from the same data set using different data and regularizer terms. eht-imaging
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can also be used to self-calibrate data, to generate synthetic data from images with realistic ther-

mal error and calibration uncertainties, and for the general plotting, analysis, and comparison

of interferometric data. Within this framework, it is easy to experiment with different arbitrary

combinations of data terms and implement new imaging methods, such as polarimetric imaging

(Chael et al., 2016), imaging in the presence of refractive scattering (Johnson, 2016), and producing

continuous movies from multi-epoch observations (Johnson et al., 2017). The eht-imaging library

is described in detail in Chapter 6.

5.7 Summary and conclusions

This chapter presented a framework for interferometric imaging using regularized maximum like-

lihood with arbitrary data products. This framework is implemented in the software library eht-

imaging (Chapter 6). This work builds on decades of past work in applying regularized maximum

likelihood approaches to interferometric imaging, and is in particular inspired by the simultaneous

minimization of multiple data terms pioneered in optical interferometric imaging (e.g., Thiébaut

2013; Thiébaut & Young 2017). This chapter extends that framework by imaging data directly

with closure amplitudes (or their logarithms) for the first time, rather than relying on amplitude

self-calibration.

With closure-only imaging, self-calibration can be bypassed entirely, producing an image that

will contain minimal calibration assumptions and will not depend on the choice of initial self-

calibration model or other assumptions made in the self-calibration loop. Section 5.4.4 showed

that this strategy performs well on simulated EHT data of Sgr A∗ and M87. Images produced

using only closure quantities have consistent fidelity at all levels of amplitude gain or miscalibration.

Furthermore, when redundant stations are included in the array, the overall fidelity of the results
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approaches that of images made with perfectly calibrated data using conventional algorithms.

Section 5.5 demonstrates that closure imaging can also produce high quality images for VLBA

and ALMA datasets at millimeter wavelengths, giving results that are of comparable quality to

expert reconstructions with multi-scale CLEAN and self-calibration. Results from closure-only

imaging can also be used to self-calibrate data and initialize additional imaging with the self-

calibrated complex visibilities. For the HL Tau ALMA datasets considered in Figure 5.10, just one

round of self-calibration and complex visibility imaging after closure-only imaging produced refined

results with fewer suspicious features than the CLEAN reconstructions.

Techniques involving calibration-insensitive closure quantities like those presented in this pa-

per can help push interferometric imaging to more and more challenging regimes, including higher

frequencies than the EHT’s current 230 GHz operating frequency. While applicable to all interfero-

metric astronomical data, these techniques are especially valuable at millimeter and sub-millimeter

wavelengths, where calibration uncertainties are a large and variable component of the error bud-

get. Adding more data terms, this method can be easily generalized to produce polarimetric images

(Chael et al., 2016; Akiyama et al., 2017a), spectral index maps, simultaneous multi-band images,

scattering mitigation (Johnson, 2016), and dynamical movies of multi-epoch data (Bouman et al.,

2018; Johnson et al., 2017).
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6
The eht-imaging library

The Regularized Maximum Likelihood (RML) approach toward interferometric imaging described

in Chapter 5 is a flexible framework. The basic idea behind RML imaging – finding the image that

minimizes an objective function (Equation 5.14) that is a weighted sum of data consistency and

regularizer terms – allows for creativity and experimentation in the imaging process, as imagers

can design new data terms and regularizers to meet the needs of their particular problem.

RML-type methods have a long history in radio interferometry, particularly in the form of the

Maximum Entropy Method (e.g., Cornwell & Evans, 1985; Narayan & Nityananda, 1986; Briggs,

1995; Holdaway & Wardle, 1990), but they have typically been implemented as a routine in a larger

interferometric data analysis package focused on CLEAN imaging (e.g., AIPS or CASA). While

RML algorithms in optical interferometry have more modern implementations, they have tended

to be implemented one-by-one in individual pieces of software (see e.g., Thiébaut & Young, 2017,

Table 1), making it difficult to compare different imaging strategies on the same data. The unique

challenges of EHT data – including the lack of phase coherence at mm-wavelengths, extremely sparse

(u, v) coverage, interstellar scattering, and intraday time variability of Sgr A∗ – have encouraged

the development of new RML methods and imaging techniques. These methods have primarily
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been collected and developed in two open-source software libraries: eht-imaging (Chael et al., 2016,

2018b, 2019a)1 and SMILI (Akiyama et al., 2017a,b).2

The eht-imaging software library (often referred to as ehtim) is a flexible Python environment

where RML algorithms can be used, experimented with, and developed.3 ehtim was originally

developed out of software for experiments with polarimetric EHT imaging (Chael et al., 2016).

Since 2016, it has become one of the primary software libraries in the calibration, analysis, and

imaging of EHT data. In addition to powering one of the three imaging pipelines that produced

the first EHT images of the black hole shadow in M87 (Paper IV), functions developed in ehtim

were used in calibrating the 2017 EHT data (Paper III) and in generating synthetic data from

GRMHD simulations and model fits (Paper V; Paper VI). Furthermore, it has served as a testbed

for novel imaging algorithms, including closure-only imaging (Chael et al., 2018b), the mitigation

of refractive interstellar scattering (Johnson, 2016) and the dynamical reconstruction of evolving

sources (Johnson et al., 2017; Bouman et al., 2018). While ehtim was designed with the EHT in

mind, it is usable with any interferometric data set, including the VLBA and ALMA data imaged

in Chapter 5. As of April 2019, the ehtim library has been used in the analyses of 18 published

papers in the astronomical literature (including the first series of EHT results in 2019).

This chapter is not intended to be documentation for the eht-imaging code; the functions, meth-

ods, and classes described below are far from an exhaustive accounting of the capabilities of ehtim.4

Instead, this chapter provides an overview of the code structure, primary classes, methods, and

scripts that were developed in ehtim and used to help produce the first images of the M87 black

hole shadow from EHT data (Paper IV).
1https://github.com/achael/eht-imaging
2https://github.com/astrosmili/smili
3ehtim is compatible with both Python 3 and Python 2.7
4The eht-imaging documentation can be found at https://achael.github.io/eht-imaging/
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Figure 6.1: The structure of the eht-imaging software library.

6.1 Code outline

eht-imaging is a library of software; even in only a few years of development, it has accrued functions

and capabilities that span a wide variety of tasks in interferometric data analysis. The core of the

code, however, is divided into two main tasks; data simulation and imaging. In data simulation, an

instance of the Image class is combined with an Array to produce data stored in an Obsdata object.

In imaging, an RML algorithm defined in an instance of the Imager class acts on an Obsdata dataset

(and an initial Image) to produce a reconstruction Image. This primary cycle of data simulation and

imaging is summarized in Figure 6.1. The four main classes are discussed in Sections 6.3–6.5.

In addition to these primary classes and functionality, an ehtim user will typically encounter

several other classes and functions in simulating, processing, and imaging interferometric data

(Section 6.6). For instance, the const_def module defines many helpful physical constants and

conversion factors used throughout the code. The Movie class extends the Image to time series of
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frames (e.g., from a GRMHD simulation) that can then be mock observed in a single observation

with the underlying time evolution. The Vex class can read in a VLBI .vex schedule file so data

can be simulated on exactly the same baselines as a real observation. The Caltable class contains

information about a time-series of complex station gains used to calibrate an Obsdata object. A

Caltable can be derived by calibrating data to an image with the calibrating.self_cal module, or

by enforcing network consistency if redundant sites are present using calibrating.network_cal. The

comp_plots module in ehtim contains a variety of functions to compare data sets and images with

different plots, and the comparisons module has tools for comparing images to each other via metrics

including NRMSE (Equation 5.28) and normalized cross-correlation. In designing an imaging or

data analysis script in ehtim, a user might alternate between functions from many of these modules

and classes. For instance, as in CLEAN, imaging with ehtim is often aided by performing alternate

rounds of imaging and self-calibration. One strategy for combining these functions into an imaging

script (used for imaging M87 with EHT data in Paper IV) is presented in Appendix E.

6.2 The Image class

An instance of the Image class contains information about an astronomical image and various meth-

ods for manipulating the image and generating synthetic data. Many Image objects only contain

total intensity information, but the class can contain information about all four polarizations, ei-

ther in a Stokes (I,Q, U, V ) or circular cross-hand (RR,LL,RL,LR) basis. The polarization basis

is stored in the Image.polrep attribute, which can be set to either 'stokes' or 'circ'.
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6.2.1 Image representaধon and metadata

Image instances can be rectangular with dimensions m × n.5 The number of pixels n in the y-

dimension (north-south) is stored as Image.ydim, and similarly the number of pixels m in the x,

east-west direction is stored in Image.xdim. The pixels are all square with a linear size ∆θ available

as the attribute Image.psize, stored in radians.

The primary image data (typically total intensity, or Stokes I, and always in units of Jy/pixel)

is stored as a one-dimensional numpy array (Walt et al., 2011) I of length M = m × n accessed

with the Image.imvec attribute. However, any polarization image can be designated as the primary

image and accessed via Image.imvec; the label that determines the “primary” polarization that is

used by default is Image.pol_prim. The various polarization images can all be accessed through

their own one-dimensional arrays (e.g., Image.qvec or Image.rrvec). Image stores the data for all

polarizations in a hidden dictionary; attributes like Image.imvec use the Python @property feature

to access the underlying data structure in a way that keeps the data consistent regardless of which

polarimetric representation is used at a given moment.

While images are specified by 1D arrays of length M , these arrays actually represent continu-

ous images. Following Bouman et al. (2016), each array of pixel intensities is taken to represent a

continuous function formed by convolving a comb of Dirac delta functions with a pixel “pulse” func-

tion (this function is also available as an attribute, Image.pulse). When imaging, this continuous

image representation multiplies the visibilities of the discrete Dirac comb array by a taper given by

the Fourier transform of the pulse function. The pulse function removes spurious high-frequency

structure introduced by the regular pixel spacing from the Fourier transform. The default pulse

function is a triangular pulse (trianglePulse2D) with width 2∆θ, where ∆ is the image pixel spac-
5In practice, most images are square with m = n. Many functions throughout ehtim have not yet been

fully debugged with rectangular images!
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ing. Other pulses can also be used, including a rectangular pulse (rectPulse2D), a circular Gaussian

(GaussPulse2D), and a cubic spline (cubicPulse2D).

Every image also carries with it the metadata necessary to simulate interferometric data from the

image. These include the source right ascension (Image.ra) and declination (Image.dec), the image

frequency in Hz (Image.rf), the observing MJD and epoch in hours (Image.mjd and Image.time),

and the source name (Image.source).

6.2.2 Loading or creaধng an image

Most instances of an Image class are loaded from a data file, but occasionally (e.g., when construct-

ing a Gaussian source model) they are created using a variety of builder functions implemented

in the Image class itself. ehtim can read in images from standard FITS format with the function

ehtim.image.load_fits. The data can be read in with any pulse function and in either polarime-

teric representation.6 The Image.save_fits method exports an Image as a FITS file. Images can

also be saved and loaded in a custom ASCII format using the Image.save_txt method and the

ehtim.image.load_txt function.

Building an image from scratch starts with defining an empty image frame. This task can

be accomplished for a square image with the ehtim.image.make_empty function, which takes the

number of pixels, image field of view, and source metadata as arguments. Once an empty image

has been created, a variety of methods can be used to add structures to the image. For instance,

Image.add_flat adds a flat background brightness; Image.add_tophat adds a constant-brightness disk

of a specified radius, and Image.add_gauss adds an elliptical Gaussian to an image. A polarization

field can also be created – either constant (Image.add_const_pol) or random with a specified position
6In addition to loading in images from the primary HDU of a FITS file, the user can choose to read in

a list of CLEAN components and deposit them on the grid without convolving them with a beam by using
the aipscc=True flag. Experience has shown this flag to be very important.
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Figure 6.2: Examples of display functions in the Image class. (Left) Output of the Image.display method after
loading a 230 GHz raytraced image from the M87 simulation R17 described in Chapter 4 (Chael et al., 2019b).
(Right) Output of the Image.contour method on the same image after convolution with a Gaussian kernel with
the same orientation as the fitted CLEAN beam to the EHT 2017 (u, v) coverage on M87, scaled down in size by
a factor of 1/2 (Paper III).

angle correlation length (Image.add_random_pol).

6.2.3 Image methods

After they are loaded or created, Images have a variety of useful methods for obtaining image

parameters, image manipulation, and display. For instance, methods like Image.total_flux, Im-

age.lin_polfrac, and Image.centroid provide the image total flux density, integrated linear polar-

ization fraction, and centroid position, respectively.

A critical operation in the imaging process is blurring an image by convolving it with a Gaussian

kernel. This step can be done in ehtim with the Image.blur_gauss method. This method convolves

the underlying image with an elliptical Gaussian beam defined by three parameters; the major axis

FWHM, the minor axis FWHM, and the position angle east of north (all in radians). In addition

to blurring, other operations implemented in ehtim for manipulating an image include shifting by

a certain number of pixels (Image.shift), rotating the image counterclockwise (Image.rotate), and
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thresholding the image to remove low-brightness noise (Image.threshold). The class also contains

two methods for interpolating an image onto a differently sized grid. The regrid_image method

uses linear or cubic interpolation to resample the pixels directly onto a new grid of arbitrary field of

view and resolution; in contrast, the Image.resample_square method directly samples the continuous

image representation defined by the pulse function to a new resolution with the same field of view,

so that the underlying continuous image is preserved.

The Image class also has two methods to display the image using matplotlib (Hunter, 2007)

and export it to a pdf file (Figure 6.2). The Image.display method can be used to display any

individual polarization image or a vector field of polarization ticks; this method allows for enough

flexibility to design near-publication-quality plots with only a few command-line options (e.g. the

choice of color map, the choice of linear, logarithmic, or gamma intensity scale, the choice of color

bar units, the choice of axis ticks or a scale bar, and the choice of how to plot the interferometer

beam). Similarly, the Image.contour method allows the user to easily create high-quality contour

plots of the image.

6.2.4 Generaধng syntheধc data

The most important method of the Image class is Image.observe, which takes an Array object

(Section 6.3) and produces synthetic visibilities in an Obsdata object. The many options in the

call to Image.observe allow the user to decide exactly how the data will be sampled, and how

they are corrupted with phase, amplitude, or polarimetric miscalibration terms. For instance, the

following command generates simulated data from an Image instance im using an Array instance eht

(observing with a bandwidth bw= 2 GHz, integration time tint= 60 s, and with new scans every

tadv=600 s) over a full 24-hour rotation of the Earth:
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obs_sim = im.observe(eht, tint, tadv, 0, 24, bw,

add_th_noise=True, ampcal=False, phasecal=False

ttype='nfft')

This specific observation includes both thermal noise (add_th_noise=True) and additional station-

based amplitude and phase errors (ampcal=False, phasecal=False).

Image.observe calls the Array.obsdata object to generate (u, v) points from an Array operating at

a frequency Image.rf as the Earth rotates between a UTC time tstart and tstop. The points are

sampled every tadv seconds in this interval.7 Thermal noise sampled from a Gaussian distribution

can be added to the visibilities (if add_th_noise=True); the standard deviation of the Gaussian

thermal noise is determined by Equation 5.8 using the bandwidth bw and integration time tint

specified. Once thermal noise is added, various flags (including phasecal and ampcal) determine

how the simulated data are mis-calibrated. This miscalibration can take the form of station-based

errors (Equation 5.3), but it can also use a full Jones formalism including polarimetric leakage and

parallactic angle rotation by setting jones=True. Appendix C discusses the full Jones formalism

implemented in ehtim in more detail.

The simplest way ehtim can generate visibilities is with a direct time Fourier transform, or DTFT.

For N observed visibilities, the corresponding visibilities V of the image vector I are V = FI, where

F is an N ×M matrix with entries

Fij = e−2πi(uixj+viyj). (6.1)

As in the integral van Cittert-Zernike theorem (Equation 5.1), (xj , yj) are the angular coordinates

(in radians) of the jth pixel, and (ui, vi) are the angular frequencies of the ith visibility measurement.

For the continuous image representations used in ehtim, the Fij entries are also multiplied by the
7In addition to the continuous sampling in Image.observe, the method Image.observe_vex can be used to

generate data on a realistic VLBI schedule, read from a .vex file.
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Fourier transform of the pulse function convolution kernel, Image.pulse, sampled at (ui, vi).

While the direct-time Fourier transform (DTFT) represented by Equation 6.1 is often the fastest

way to compute trial visibilities for sparse arrays observing with narrow fields of view, for large

images or large numbers of visibilities, the DTFT is slow and prohibitively expensive in terms of

computer memory. In this regime, ehtim uses the Nonequispaced Fast Fourier transform C library

(NFFT: Keiner et al. 2009) accessed via the Python pyNFFT wrapper.8 NFFT takes the Fast

Fourier Transform (FFT) of the trial image and interpolates the result to the irregularly sampled

(u, v) points, producing a highly accurate approximation of the exact DTFT. The choice of Fourier

transform scheme is specified in Image.observe with the ttype flag.

6.3 The Array class

The Array class is relatively simple. It contains a numpy record array (Array.tarr) that lists the

telescopes in an interferometric array and their important properties. For each telescope, this data

table stores its label, x, y, z position in Cartesian geocentric coordinates, SEFDs both for right and

left circular polarizations, complex d-terms, and field rotation parameters (see Appendix C).

The primary method of the Array class is Array.obsdata. This method takes in a source sky

position (RA and dec), a telescope radio frequency and bandwidth, and an observing cadence

between a start and stop time in order to generate (u, v) points from earth rotation and produce

an empty Obsdata object. A call to Array.obsdata is the first call made in Image.observe.

An Array can be loaded from a text file with the ehtim.array.load_txt function. In addition to

VLBI arrays that rotate with the Earth, Palumbo et al. (2019) added the ability to track potential

orbiting stations in an Array object using orbital two-line elements (TLEs).
8https://pypi.Python.org/pypi/pyNFFT
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6.4 The Obsdata class
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Figure 6.3: Examples of the output of the built-in plotting methods in the Obsdata class applied to scan-averaged
data from the April 11, 2017 EHT observations of M87 (Paper III). (Top left) visibility amplitudes plotted versus
baseline distance, (u2 + v2)1/2. (Top right) Visibility amplitudes vs UTC time on the ALMA-PV baseline (AA-
PV using the EHT 2017 station codes). (Bottom left) closure phase plotted vs UT time on the ALMA-LMT-SMT
(AA-LM-AZ) triangle. (Bottom right) log closure amplitudes vs UT time on the ALMA-SMA-SMT-LMT (AA-SM-
AZ-LM) quadrangle.

Every Obsdata instance stores a data table in the form of a numpy record array Obsdata.data that

contains information on the observing and integration times, telescopes, (u, v) coordinates, complex

visibilities, and thermal noise on all four polarizations across a full interferometric observation. Each

Obsdata object also contains a telescope array (Obsdata.tarr) identical to that found in the Array.

In addition to keeping the telescope data (positions, SEFDs) accessible, the order of telescopes in
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this array is critical in determining how closure quantities are generated (Section 6.4.3).

In addition to the underlying data, an Obsdata object contains certain metadata specifying the ob-

servation, including the source name (Obsdata.source), sky coordinates (Obsdata.ra, Obsdata.dec),

observing day and start/stop times in hours (Obsdata.mjd, Obsdata.tstart, Obsdata.tstop), and

the observing frequency and bandwidth (Obsdata.rf, Obsdata.bw). Like an Image, an Obsdata in-

stance can either be represented in a Stokes or circular polarization basis, determined by the Obs-

data.polrep attribute. An Obsdata with a given polrep can be switched to the other representation

with the Obsdata.switch_polrep method. Regardless of the representation, any polarimetric data

product can be extracted from an Obsdata instance with the Obsdata.unpack method (Section 6.4.2).

6.4.1 Loading or creaধng an observaধon

Typically, Obsdata instances are created from a call to Image.observe (Section 6.2.4) or by load-

ing data from a .uvfits file, one standard format for interferometric data exchange.9 Data can

be read from uvfits files using ehtim.obsdata.load_uvfits in either a circular polarization (pol-

rep='circ') or Stokes (polrep = 'stokes') basis. Currently, the eht-imaging library only sup-

ports frequency-averaged data. When loading in data from a multi-channel .uvfits file, the data

may be averaged in frequency, or a particular channel and IF can be selected. In addition to

standard .uvfits files, data can also be saved and loaded in a custom ASCII format using Obs-

data.save_txt and ehtim.obsdata.load_txt. Total intensity visibility data can also be saved or

loaded from the .oifits optical interferometry standard via the Obsdata.save_oifits method and

ehtim.obsdata.load_oifits function.
9The .uvfits standard is defined in AIPS memo 117: ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/

PUBL/AIPSMEM117.PS
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6.4.2 Accessing and ediধng visibility data

In general, data should not be accessed directly from the Obsdata.data table. Instead, they should

be accessed through class methods. The most general of these methods is Obsdata.unpack. The

unpack method can extract one or several data products (e.g., integration time or Stokes I visibility)

from the data table; it can also derive new data products from the base data types (e.g., the

source elevation angle at a site θel or the fractional polarization on a baseline m̆). The full list of

the 72 quantities that can be accessed with Obsdata.unpack is available in ehtim as the constant

ehtim.FIELDS.

Using Obsdata.unpack allows the Obsdata object to store only the minimal set of data it needs;

for instance, Obsdata.unpack intelligently computes conjugate visibilities on the baseline (−u,−v)

if requested, though only data on one baseline ordering is stored in the data table. More generally,

using Obsdata.unpack to read the data ensures that the underlying data are not corrupted, overwrit-

ten, or made inconsistent when accessing the table. In addition to Obsdata.unpack, which extracts

the specified data on all baselines throughout an observation, the method Obsdata.unpack_bl allows

the user to isolate a certain data product on an individual baseline over time.

In the reverse scenario, where the user wishes to edit, flag, or scale data in an existing object, it

is always safer to create a new object than to edit the data in Obsdata.data in place. There are a

variety of helper functions already defined in ehtim for data editing. For flagging, these methods

include Obsdata.flag_uvdist (to flag short or long baselines) , Obsdata.flag_sites (to flag individual

stations) Obsdata.flag_UTrange (to flag data in a given time range), Obsdata.flag_anomalous to

flag large outliers, and Obsdata.flag_low_snr (to flag low SNR data points). Other methods for

manipulating data that are relevant to imaging include Obsdata.taper and Obsdata.inverse_taper,

which multiply or divide the visibilities by a Fourier transformed Gaussian circular kernel to degrade
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or enhance the resolution of the data, and Obsdata.rescale_zbl, which rescales short baselines that

may contain contributions from extended structure invisible to longer baselines so that they are

consistent with the compact flux density. Rescaling short baselines is particularly important for

the EHT, where intra-site baselines (ALMA-APEX; JCMT-SMA) are many orders of magnitude

shorter than the VLBI baselines.

The fundamental data products in an Obsdata object are the complex visibilities. Typically, clo-

sure quantities are generated from the underlying visibilities on-the-fly when needed in imaging and

analysis. This method ensures that all closure data are consistent with the underlying observation.

However, it is occasionally useful to manipulate the closure quantities independently. For instance,

it may be useful to manually flag certain closure triangles, or average closure phases on a different

timescale than visibility amplitudes in imaging. For this purpose, an Obsdata object can carry at-

tributes, including Obsdata.cphase, Obsdata.camp, Obsdata.logcamp, which contain pre-computed

tables of closure quantities. These attributes can be set manually or generated with the class

methods Obsdata.add_cphase, Obsdata.add_camp with specified averaging and flagging schemes. If

pre-computed closure quantities are present in an Obsdata instance, plotting and imaging routines

elsewhere in the code will automatically use these tables instead of recomputing the closure quan-

tities from the visibility data.

6.4.3 Generaধng closure quanধধes

.

A core functionality of the Obsdata class is the ability to generate sets of closure quantities

(closure phases, closure amplitudes, log closure amplitudes) for use in imaging and model fitting to

the data. These quantities are typically generated on-the-fly prior to imaging to ensure they are

consistent with the underlying data in the Obsdata.data table.
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The Obsdata.c_phases method returns a record array of the chosen closure phases on all specified

triangles. It can compute closure phases for any polarization (with the vtype argument), and via

the count argument, this method will either return a maximal or minimal set of closure phases

(see Section 5.1.2). The maximal set includes closure phases computed on every triangle formed by

telescopes observing at a given time stamp. In contrast, the minimal set includes only a subset of

(Ns−1)(Ns−2)
2 triangles at any instant needed to reconstruct the closure phase on any other triangle.

The algorithm used by ehtim for choosing this minimal set prioritizes closure triangles that include

a reference station (TMS; Blackburn et al. 2019); this reference station in ehtim is always the first

listed station in the Obsdata.tarr array. Typically, this reference is set to the station with the

highest SNR; however, it can be randomized with the Obsdata.reorder_tarr_random method.

Similarly, the Obsdata.c_amplitudes method returns a record array of closure amplitudes or log

closure amplitudes (depending on the ctype parameter) for any polarization. Like Obsdata.c_phases,

Obsdata.c_amplitudes can return either an array of all closure amplitudes on all quadrangles, or

it can return a minimal set needed to recover all the closure amplitude data. The minimal set

algorithm for closure amplitudes is also from Blackburn et al. (2019); similarly to the closure phase

minimal set algorithm, it relies on the reference station specified by the telescope array.

6.4.4 Ploষng

Finally, several built-in methods of Obsdata provide easy interfaces to plot data products against

each other and across time (Figure 6.3 shows several example plots generated with these methods).

Obstata.plotall is a method that allows for any two derived data products in the observation

(from the list in ehtim.FIELDS) to be plotted against each other in a scatter plot. Obsdata.plot_bl

plots individual quantities on a baseline as a function of time, and Obsdata.plot_cphase and Obs-

data.plot_camp each produce quick plots of the closure phases and amplitudes (from any polariza-
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tion) on a specified quadrangle or triangle.

All the Obsdata plotting methods use underlying matplotlib methods and return an Axes object;

these plots can be easily customized to produce professional quality plots or combined with other

Axes in a larger figure. The ehtim.plotting.comp_plots module makes it possible to quickly over-

plot information from multiple Obsdata objects or to compute corresponding information from an

Image. For example, with the plotall_compare function of the comp_plots module, the user can

quickly overplot visibility amplitudes (or phases, polarimetric ratios, etc.) from a given observa-

tion on the same axis as the corresponding noise-free quantities computed from several trial image

reconstructions.

6.5 The Imager class

The Imager class in ehtim defines an algorithm for RML imaging through a data set, initial image,

and an objective function with given regularizer and data term weights (Equation 5.14). The

data is passed in with an Obsdata object, and the initial image and prior image (used in MEM

regularization) are Image objects.10 The data and regularizer terms used in the RML algorithm

and their associated hyperparameter weights are set with Python dictionaries.

For instance, suppose an ehtim user wanted to produce an image from a data set in the Obsdata

object obs. They set up an initial Gaussian image with the appropriate size and field of view using

the Image construction methods described in Section 6.2; this Gaussian will also be used as the

prior image for MEM. Then they define the objective function (Equation 5.14); they use visibility

amplitude and closure phase χ2 terms, with data term weights αamp = 1, αcl phase = 10. The

regularizer terms will be a standard maximum entropy regularizer (called ‘simple’ in ehtim) with

a weight βMEM = 1 and a centroid constraint βcentroid = 100 to keep the source in the frame. The
10Critically, these Images and the Obsdata must have the same source metadata.
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total flux density of the source is 1 Jy. They would set up the imager with the following command:

imgr = ehtim.Imager(obs, init_gauss, prior_im=init_gauss, flux=1.0,

data_term={'amp':1, 'cphase':10},

reg_term={'simple':1, 'cm':100}

)

Once initialized, the data can be accessed and changed with the attribute Obsdata.obs_next,

and the initial image/prior can be changed with the Obsdata.init_next and Obsdata.prior_next

attributes. Similarly, the regularizer terms and data terms used can be accessed and changed

through the attributes Imager.dat_term_next and Imager.reg_term_next. All of the data terms in

Section 5.2.2 and all of the regularizers in Section 5.2.3 are included in the Imager class, as well as

several additional regularizers (e.g., several implementations of a constraint on image compactness).

Several additional parameters are important in specifying an imaging routine. These include the

maximum number of iterations allowed in the imager (Imager.maxit_next), and the convergence

criterion on the change in the objective function and objective function gradients that will terminate

the imager before the maximum number of iterations is reached (Imager.stop_next). The type of

Fourier transform algorithm used can also be specified (Imager.ttype_next, see Section 6.5.1), and

the user can also choose whether or not to perform the imager on a log-space image in order to

avoid negative pixels by setting Imager.transform_next='log' (Section 6.5.3).

6.5.1 Running the Imager

Once the data, initial image, χ2 terms, regularizers, and additional parameters are defined in an

Imager object, the optimization can be run with the command Imager.make_image_I. The Imager

can run in the background and provide diagnostics only when it converges or reaches the maxi-

mum number of iterations; alternatively, the Imager can update the user and display the current

image and χ2 values in real time with every step toward a minimum of the objective function.
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Figure 6.4: Example snapshots of the interactive display while running Imager.make_image_I with the flag
show_updates=True on EHT 2017 observations of M87 (Paper III,Paper IV). (Left) Only four steps into the imag-
ing process, the image still resembles the circular Gaussian initial image and the χ2 terms on all data products are
high. (Right) later in the imaging process, the image nearly fits the data and has converged to a ring-like struc-
ture.

This feedback is enabled by setting show_updates = True in the call to Imager.make_image_I. Fig-

ure 6.4 shows two snapshots of an example Imager in progress after calling Imager.make_image_I

with show_updates=True. While this real time updating of the Imager’s progress slows down the

imaging process substantially, it is useful for providing feedback on how a certain set of parameter

choices affects the image reconstruction. For instance, it is particularly helpful to diagnose if the

imager is sent into a false local minima early in the optimization. The resulting image from a call

to Imager.make_image_I is accessed by calling the method Imager.out_last.

The Imager stores precomputed data and gradient information and can run an imaging algorithm

quickly multiple times in a row using different initial images (e.g., iteratively blurring and re-imaging

from the blurred output image for convergence). When data terms, regularizer weights, or even the

underlying data are changed through the attributes described above, the Imager notes this change

in the history and recomputes the pre-computed data products and gradient terms. The Imager

object contains a full history of all imaging steps run through this interface. Even if a user is
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imaging experimentally in the command line, the exact sequence of commands can be recovered

from the built-in history to produce an automated imaging script. As much as possible in a given

imaging session, users should update existing Imager objects rather than re-initializing the Imager

at different stages in the imaging process.

In addition to the total intensity imaging discussed in this thesis, the Imager class also implements

individual imaging of the four Stokes parameters, and the simultaneous imaging algorithm for

the polarization ratio and polarimetric position angle described in Chael et al. (2016). It also

implements the simultaneous imaging + scattering deconvolution algorithm of Johnson (2016).

On small data sets or on reconstructions with a small field of view, direct-time Fourier trans-

forms are sufficient to compute the data terms in Section 5.2.2. For larger data sets, the DTFT

matrix Fij (Equation 6.1) becomes prohibitively large to store in memory and prohibitively slow

at extracting visibilities from the trial image at each step. In this regime, the Imager can use

NFFTs instead by setting the ttype='nfft' flag in initializing the Imager instance, or by setting

Imager.ttype_next='nfft' after the instance has been created.

To find a minimum of the objective function, the Imager.make_image_I method uses the Limited-

Memory BFGS algorithm (Byrd et al., 1995) as implemented in the scipy package (Jones et al.,

2001; Oliphant, 2007). The L-BFGS algorithm is a quasi-Newton gradient descent method. While

L-BFGS can compute the gradient at each step numerically, it is much more efficient to specify

the gradient analytically. All of the data and regularizer terms implemented in ehtim have analytic

forms of the gradient defined (Section 6.5.2 and Appendix D). These analytic gradients are used

by default, but the Imager can be told to use numerical approximations to the gradient with the

grads=False flag in the call to Imager.make_image_I.
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6.5.2 Data term gradients

When using gradient descent algorithms to minimize the objective function (Equation 5.14), provid-

ing an analytic expression for the gradient of the objective function with respect to the image pixel

values greatly increases the speed of the algorithm by bypassing the expensive step of estimating

gradients numerically. When using a DTFT, the number of computations to evaluate the gradient

of a χ2 term numerically via finite differences is roughly O(M2×N), where M is the total number

of image pixels and N is the number of measurements. When using an FFT or NFFT, the scaling

is roughly O(M × (M logM +N)). In contrast, when using analytic gradients, the corresponding

scalings for DTFT and FFT are O(M ×N) and O(M logM +N), respectively.

The gradient of the simplest χ2 term, using complex visibilities (Equation 5.16), is

∂

∂Ii
χ2

vis = − 1

N

∑
j

Re
[
F †
ij

(
Vj − V̂j
σ2j

)]
. (6.2)

Equation 6.2 indicates that the gradient is proportional to the adjoint Fourier transform of the

data residuals. While more complicated (and more difficult to derive), the gradients for the other

χ2 terms given in Section 5.2.2 take similar forms. The gradients for all the total intensity imaging

data terms implemented in ehtim are presented in Appendix D. The gradients of the regularizer

terms are easier to derive, and are also presented in Appendix D for completeness.

6.5.3 Image transformaধon

When imaging, the gradient of the objective function may drive image pixels to negative values,

breaking the assumption of image positivity that underlies VLBI imaging. To avoid this issue, the
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Imager class can ensure a positive brightness in each pixel by performing a change of variables

Ii = exp ξi , −∞ < ξi <∞. (6.3)

When imaging in the log intensity domain ξi, the gradients in Section D must be multiplied by

exp ξi. The final returned image (Imager.out_last) is always stored in the original units (Jy/pixel).

The Imager can also be run without transforming the pixel intensities to ensure positivity; this is

done by setting transform=False when initializing the imager, or Imager.transform_next=False in

later stages.

Even without any other regularization, this positivity constraint acts as an effective regularizer

that removes many local minima in the χ2 landscape the minimizer might otherwise fall into.

For instance, the “dirty image”, or direct inverse Fourier Transform of the measured visibilities

with all unmeasured visibilities set to zero, will typically have negative pixel values. Figure 7 of

Paper IV shows that the positivity constraint, combined with a restricted FOV, can regularize the

reconstruction enough to produce accurate images of geometric models from synthetic EHT data.

6.6 Other rouধnes

In addition to the primary image classes described above, the flexible nature of the eht-imaging

framework has encouraged the development of many additional software tools for analyzing and

manipulating EHT and other interferometric data. This section discusses only two of these addi-

tional functions; a full description of all classes and functions in the eht-imaging code is available

in the documentation.11

11The ehtim documentation is dynamically updated from docstrings embedded in the code using Sphinx:
http://www.sphinx-doc.org/en/master/.
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6.6.1 Self-calibraধon

Typically in VLBI imaging, rounds of imaging the data (either by running CLEAN or minimizing

the objective function in RML) are alternated with rounds of self-calibration where the station gains

and phases are adjusted to match the observed complex visibilities to the solved-for structure as best

as possible. While closure-only imaging allows for images that fit the most robust data products to

be generated without any calibration (Chapter 5), including at least one self-calibration step can

substantially improve the results of this method (Section 5.5). Furthermore, the station amplitude

gain terms are often at least weakly constrained a priori; in this case, it is often preferable to include

visibility amplitudes (with a weak hyperparameter) in the imaging objective function along with

closure amplitudes, before refining the gain solution with self-calibration.

The eht-imaging library implements self-calibration via the Caltable class and the ehtim.selfcal

function. For example, to self-calibrate the data in obs to the final image produced by the Imager

imgr, an ehtim user could run the commands:

caltab = ehtim.selfcal(obs_static, imgr.out_last(),

gain_tol=0.1, caltable=True)

obs_sc = caltab.applycal(obs_static, interp='nearest')

A Caltable instance (caltab in the above code snippet) stores an array of two complex station

gains (one per polarization) as a function of time for each telescope in an array. Caltable objects are

associated with a particular Obsdata instance. If the Caltable and Obsdatametadata match, the gain

solution in the Caltable can be applied to the Obsdata with the Caltable.applycal method. This

method interpolates the complex gains stored in the Caltable, multiplies the Obsdata visibilities

according to the convention in Equation 5.3 (e.g. V12 → G1eiϕ1G2e−iϕ2V12), and returns the

resulting calibrated data set as a new Obsdata instance.

The ehtim.selfcal function produces a Caltable by finding the set of complex gains ga = Gaeiϕa
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that, when applied to a set of complex visibilities in an Obsdata object, produce calibrated visibilities

that best match the model visibilities from the supplied Image. As is standard in interferometry,

the gains can be derived with a specified solution interval such that all the data points within a

given time window are forced to receive the same gain correction. The self-calibration algorithm

finds the set of complex gains {g} that minimizes the objective function:

Jg ({ga}) = χ2
g

(
{V }, {V̂ }, {g}

)
+ Sg ({g}) . (6.4)

The goodness-of-fit χ2
g function for the gains is a function of the set of measured visibilities {V }, the

set of model visibilities sampled on the same baselines {V̂ }, and the set of complex, time-variable

station gains {g}. It is

χ2
g

(
{V }, {V̂ }, {g}

)
=
∑
i

1

σ2i

∣∣∣V̂i − ga(t)g
∗
b (t)Vi

∣∣∣2 , (6.5)

where the visibility Vi is on a baseline formed by stations a and b, and V̂i is the model image

visibility, both at time t. The selfcal function also imposes a prior term on the gain so as to

prevent the algorithm from over-fitting the data with gains that are too different from unity (i.e.,

perfect a priori calibration). The prior term Sg is

Sg ({g}) =
∑
{g}

log |g|2

T 2
, (6.6)

where T (set by the gain_tol flag) is a fractional tolerance on the allowed gain deviation from unity,

and the sum is over the full set of all station gains at all times t. For instance, setting T = 0.1

would push the algorithm to find gain solutions that are within 10% of 1.

In addition to the complex self-calibration described above, the selfcal function can also derive
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solutions for only the phase corrections ϕa or only the amplitude corrections Ga. The user can set

which type of self-calibration is run by changing the method flag to 'both','amp' or 'phase' when

running the selfcal function. As in CLEAN imaging, self-calibrating the visibility phases before

calibrating the amplitudes is usually a good choice to help the imaging process converge. Finally,

depending on whether the Caltable flag is set to True or False, the selfcal function will either

return the resulting table of station gains in a Caltable object, or it will go ahead and apply those

gains directly to the data and return a new Obsdata object.

In addition to the ehtim.selfcal function, ehtim also contains the function ehtim.netcal for

network calibration of the visibility without any source image. The network calibration algorithm

(Johnson et al., 2015) enforces the constraint that visibilities to co-located sites be identical and

that the visibility amplitude on trivial baselines between co-located sites be equal to a specified

total flux density. The network calibration routine in ehtim was the final step of the data calibration

pipeline for the 2017 EHT data described in Paper III.

6.6.2 Diagnosধc summary plots

After a final image is produced from an ehtim imaging script, it is helpful to gather a set of diagnostic

statistics and plots on how well that image fits the data used in the imaging process. The eht-

imaging library contains many functions to compute these (e.g., visibility χ2 terms, self-calibrated

gains, plots of closure phase vs time), but it can be difficult to manually check each statistic every

time an imaging algorithm is run.

The ehtim.imgsum function computes a full set of diagnostic statistics and plots to assess the fit

quality of an image when compared to data. For instance, to run the function on a final Image

instance im_out, a final self-calibrated Obsdata instance obs_sc, and an initial dataset obs_original:

the user would call

228



ehtim.imgsum(im_out, obs_sc, obs_original, 'imgsum.pdf')

This function will produce a .pdf file called imgsum.pdf that contains the final image and a full set

of diagnostic information. Figure 6.5 shows an example of the first page of one of these summary

.pdfs, generated from running the sample imaging script in Appendix E on scan-averaged 2017

EHT data. The first page of a summary file contains a plot of the image, the image blurred to the

nominal array resolution, χ2 statistics on all the quantities described in Section 5.2.2, and closure

phase and log closure amplitude goodness-of-fit statistics broken down on individual triangles and

quadrangles in the minimal sets used in imaging. An example second page is shown in Figure 6.6;

this page shows a plot of the visibility amplitudes from the model and self-calibrated data, the

visibility amplitude χ2 statistics broken down by baseline, and the derived self-calibration solution.

The remaining plots in an image summary sheet show the amplitudes, closure phases, and log

closure amplitudes on individual baselines, triangles, and quadrangles. Investigating these plots

and the individual statistics in the summary .pdf file can provide quantitative information about

how well an image fits the data; it can also guide the user to which amplitudes, closure amplitudes,

or closure phases are most critical in driving the fit or which of these data products is not being

well fit by the current imaging approach.

6.7 Summary

The eht-imaging library is a new, open-source, comprehensive software suite that allows for the

easy inspection, analysis, calibration, and imaging of both real and simulated interferometric data.

This chapter presents the fundamentals of the main classes and methods developed in ehtim over

the last two years. The development of ehtim proceeded in parallel with advances in techniques for

imaging EHT data sets. While the code was originally developed for polarimetric imaging (Chael

et al., 2016), it was reorganized into a modular framework to enable imagers to easily swap out
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data terms and regularizers during the development of the closure-only imaging method (Chael

et al., 2018b). As the 2017 EHT data were prepared and imaged over 2017 and 2018 (Paper III;

Paper IV), new ideas for dealing with this particularly challenging data set expanded the code’s

functionality and reliability even further.

Despite the length of the full ehtim code (68,554 lines of Python code at the time of this

writing) and its many capabilities, the organization of ehtim’s of main functionality into four main

classes – Image, Array, Obsdata, and Imager– means that learning the basic concepts behind the

code is relatively straightforward. The modular nature of the code makes it easy to build off of

previous class methods and example scripts and create new functions, classes, and methods to attack

new challenges. Thanks to the active development of many contributors (10 unique contributors

responsible for > 1500 total git commits as of 2019), this chapter has only scratched the surface

of the tools available in ehtim. An incomplete list of other capabilities of ehtim developed by EHT

collaborators includes: imaging polarimetric data and solving for polarimetric gain and leakage

terms, simulating data from movies of time-variable sources, reconstructing time-variable data into

movies with special regularizing functions to control how images change over time, sophisticated

averaging and filtering of visibility and closure data, new regularizers to constrain image large-scale

structure without short (u, v) spacings, and simulating data on baselines to antennas orbiting the

Earth.

Over the past two years, ehtim has evolved into a critical component of the analysis pipeline of the

full global EHT collaboration. It is actively used and developed by collaboration members around

the world. Results from ehtim have contributed to 18 peer-reviewed publications over the last

two years, including the first images of a black hole shadow from the EHT (Paper III; Paper IV;

Paper V; Paper VI). Appendix E presents a full imaging script very similar to the one used in

Paper IV to produce images of the black hole shadow in M87 from EHT data. This script has
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been adapted with only minor changes from the script used to produce the fiducial M87 images in

Paper IV. Despite containing multiple rounds of imaging and self-calibration, the script is relatively

short and relies only on ehtim concepts presented in this chapter. The imaging and characterization

of the M87 black hole shadow using ehtim is described in Chapter 7.
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Figure 6.5: Example of the first page of an image summary sheet automatically generated by ehtim.imgsum on a
reconstruction of 2017 EHT data. The first page of the summary sheet displays the image and the image blurred
to the array nominal resolution, presents statistics of the image fit to the data, and breaks down the image-data
goodness of fit on individual closure triangles and quadrangles.
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Text in this chapter was previously published in
ApJL 875 (2019), L4 (The Event Horizon Tele-
scope Collaboration et al.)

7
Measuring the supermassive black

hole shadow in M87

In April 2017, the Event Horizon Telescope (EHT) observed the supermassive black hole in M87 at

230 GHz with a full array at five geographic sites for the first time. These sites were ALMA and

APEX in Chile, the SMA and JCMT on Maunakea in Hawai‘i, the SMT in Arizona, the IRAM

30-m telescope in Spain, and the LMT in Mexico. This historic observation was only made possible

by years of technical development, outfitting the planet-spanning array with the advanced digital

backends, masers, and data recorders that allowed every EHT site to record data at 230 GHz with

2 GHz of bandwidth (see Paper II). After extensive effort in correlating, reducing, and calibrating
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Figure 7.1: Maximally conservative images of M87 from the EHT on each of the four observing days in 2017 (Fig-
ure 15 of Paper IV). The indicated beam is 20µas, which corresponds to the CLEAN beam used in the DIFMAP

reconstructions of these data.
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the data from all seven telescopes (Paper III), the first images of the black hole shadow in M87

were generated from these data (Paper IV).

After summarizing the imaging process – from initial blind imaging to automated surveys of the

imaging parameter space – and discussing the main features of the resulting images in Section 7.1,

Sections 7.2–7.6 present the full feature extraction and ring-fitting analysis presented in Section

9, Appendix G, and Appendix I of Paper IV. These sections present the method implemented in

eht-imaging for identifying rings in images of M87 and identifying their features (Section 7.2), the

method’s results on tests with synthetic data reconstructions (Section 7.3), and the ring diameters

and other parameters measured from the fiducial M87 images from three independent imaging

pipelines (Section 7.4). Section 7.5 notes some potential biases in the measured parameters – no-

tably the ring diameter and width – that arise from the finite resolution of the EHT reconstructions.

Section 7.6 presents unwrapped radial and angular profiles produced from these ring fits and uses

these profiles to discuss features in the ring-like structure observed in M87 at 230 GHz. Finally,

Section 7.7 presents a simplified version of the analysis developed in Paper VI to measure the

mass of the central supermassive black hole in M87 from the 2017 EHT images produced with the

eht-imaging library.

7.1 EHT images of M87

The EHT’s first 230 GHz images of M87 were subjected to an exhaustive process of validation and

cross-checks designed to remove human bias from the imaging process as much as possible and to

determine which features in the final images are robust to imaging choices. Paper IV used a two-

stage imaging process. In the first stage, four teams of experts imaged the EHT data in isolation;

prevented from exchanging information with each other for over a month, these teams worked to
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understand the data and produce reliable images using a variety of imaging methods and software

(see Figure 4 of Paper IV). Once these first, blind images were shown to be consistent, Paper IV

proceeded to systematically explore the imaging choices available in three software pipelines – (1)

the traditional CLEAN algorithm implemented in DIFMAP (Shepherd, 1997), (2) the eht-imaging

library described in Chapter 6 (Chael et al., 2016, 2018b), and (3) the SMILI sparse imaging library

(Akiyama et al., 2017a,b). After designing minimal template scripts for each method, an exhaustive

survey of the parameter search available to each imaging method was conducted. This parameter

search generated images both from M87 data and synthetic data sets for ≈104 parameter combina-

tions. Every parameter combination was then ranked based on its performance in reconstructing

a suite of synthetic datasets with the same (u, v) coverage as the April 2017 M87 observations,

but with distinct underlying emission structures. Only combinations of imaging parameters that

could reconstruct the four distinct synthetic sources in the training set and distinguish between

them (e.g., between a filled disk and a jet) were included in the final “Top Set” of best imaging

parameters for each method. From each Top Set, the best performing parameter combination was

denoted as the “fiducial parameters.”

Figure 7.2 shows the results of reconstructing images from the EHT 2017 M87 data with the

fiducial parameters of all three imaging pipelines. All twelve images in Figure 7.2 (three methods,

four days) are consistent in producing an asymmetric ring of ≈40µas diameter, brighter in the

south than the north. However, the images produced by the different methods are not identical.

For instance, the DIFMAP images are restored with a 20µas FWHM Gaussian beam, limiting their

resolution when compared with the RML methods (eht-imaging and SMILI). While the structure

in the images from the two RML pipelines is in general consistent, eht-imaging and SMILI produce

images with different apparent azimuthal structure than DIFMAP.

It is not surprising that, given the sparse nature of even the best EHT data, different imaging
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Figure 7.2: Fiducial images of M87 on all four observed days from each of the three imaging pipelines (Figure 11 of
Paper IV). CLEAN images (from DIFMAP) are shown after convolution with a 20µas beam; eht-imaging and SMILI

results have no restoring beam applied.

methods would produce different structure, particularly on scales smaller than the ≈20µas CLEAN

beam. The final, maximally conservative images in Figure 7.1 were generated by averaging together

the fiducial images from all three imaging pipelines after restoring each to a common resolution set

by the beam-convolved DIFMAP reconstruction.

On all four days of observation, these EHT images of M87’s central engine show a characteristic

ring of diameter ∼ 40µas, consistent with the shadow of a supermassive black hole with mass

M = 6.5 ± 0.7 × 109M⊙ at a distance of 16.8 Mpc (Paper VI). The ring is brighter in the south

on all four days, consistent with a clockwise sense of fluid rotation near the horizon (Chapter 3).

Assuming the jet is powered by the Blandford & Znajek (1977) mechanism, this asymmetry indicates

that the black hole spin is oriented away from Earth (Paper V). In the six days between the first EHT
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observation on April 5 and the last on April 11, the structure in the core of M87 evolved, changing

the observed closure phases and visibility amplitudes (Paper III). The final images in Figure 7.1

show a counterclockwise shift in brightness along the ring between the first and last observations.

While intriguing, this variation should not be interpreted as reflecting any underlying physical

motion in this direction. In the simulations of the M87 accretion flow presented in Chapter 3,

for instance, the accretion flow and jet rotate clockwise, but similar counterclockwise apparent

motion can arise on ∼week timescales from variations in the brightness of certain image features

(see Figure 3.12).

The maximally conservative images in Figure 7.1 provide a visual indication of what structures

in the images are guaranteed to be robust to choices in the imaging procedure. To further assess the

consistency of the fiducial images (Figure 7.2) with each other and determine which specific image

features are most reliable, it is helpful to measure certain parameters that characterize asymmetric

rings directly from the images and compare the results across days and imaging method. These

parameters are the ring diameter d, the width w, the orientation angle η, the asymmetry A, and

the fractional central brightness fC.

7.2 Ring parameter definiধons

The ring parameter estimation code described in this Section and used in the analysis of EHT

images in Paper IV and Paper VI is implemented as the REx (Ring Extractor) module in eht-

imaging.1 The motivating idea behind this method is that, to robustly identify a ring in a given

reconstructed image, one should search for the central point from which radial profiles are peaked

at a similar distance. That is, from a candidate ring center position (x, y), REx samples a linearly

interpolated image equally in azimuthal angle θ between 0 and 360◦ and in radius r between 0
1This section was originally published as Section 9.1 of Paper IV
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and 50µas to obtain a transformed image: I(r, θ;x, y). Then, for each radial profile at fixed θ, the

code identifies the distance rpk at which the angular profile assumes its peak brightness. The ring

radius at a given position, r̄pk(x, y) is defined as the mean of these peak distances:

rpk(θ;x, y) = argmaxr [I(r, θ;x, y)] , (7.1)

r̄pk(x, y) = ⟨rpk(θ;x, y)⟩θ∈[0,2π] .

To estimate an associated uncertainty in r̄pk, REx uses the standard deviation σr̄(x, y) of the

rpk(θ;x, y) values.

To find the ring center (x0, y0), the code searches over (x, y) and identifies the position that

minimizes the normalized radial peak dispersion:

(x0, y0) = argmin
[
σr̄(x, y)

r̄pk(x, y)

]
(x,y)

. (7.2)

The measured diameter d is then twice r̄pk measured from the identified center (x0, y0),

d = 2r̄pk(x0, y0), (7.3)

and the associated uncertainty σd in the diameter is

σd = 2σr̄(x0, y0). (7.4)

Although REx was designed to specifically search for circular features, note that σd/d can be inter-

preted as a measure of the circularity of the identified ring-like feature (Paper VI).

To avoid spurious detections when searching for the center location (Equation 7.2), REx first
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blurs the image with a 2µas FWHM Gaussian (approximately the pixel size of the original M87

reconstructions) and thresholds the search image below 5% of the peak brightness. The range

of allowed diameters is also restricted to 10–100µas. However, the original (unconvolved and

unthresholded) image is used for all subsequent analysis.

The ring width w is determined by measuring the FWHM of each radial slice at constant

θ and taking the mean. To avoid bias in the measurement from the resampled image I(r, θ)

having a nonzero floor value outside the ring, it is important to subtract the value Ifloor =

⟨I(rmax = 50µas, θ)⟩θ from each radial profile before computing the FWHM:

w = ⟨FWHM [I(r, θ)− Ifloor]⟩ . (7.5)

The uncertainty σw is computed from the standard deviation of the set of FWHMs. Note that the

measured width is dependent upon both the intrinsic width of the source and the finite resolution

of the array. Thus, w should be viewed only as an upper limit on the intrinsic ring width, and it is

biased upward by the application of a restoring beam (e.g., for DIFMAP reconstructions). This bias

is explored further in Section 7.5.

The ring orientation angle η (measured east of north) is computed from the individual angular

profiles I(r, θ) at fixed r. To compute η, REx finds the argument of the first angular mode (m = 1)

of the angular profile at each radius and then takes the overall orientation angle η as the circular

mean of these angles over the ring width; from rin = (d− w)/2 to rout = (d+ w)/2. That is,

η =

⟨
Arg

[∫ 2π

0
I(θ)eiθdθ

]⟩
r∈[rin,rout]

. (7.6)

Similarly, the associated uncertainty ση is the circular standard deviation of the angle measurements

across the ring width, for r ∈ [rin, rout].
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The degree of azimuthal asymmetry in a ring is determined from the normalized amplitude of

the first angular mode for radii between rin and rout. That is,

A =

⟨∣∣∣∫ 2π
0 I(θ)eiθdθ

∣∣∣∫ 2π
0 I(θ)dθ

⟩
r∈[rin,rout]

. (7.7)

The associated uncertainty σA is the standard deviation of the asymmetry at each r ∈ [rin, rout].

The asymmetry A takes values in the range from 0 to 1, with 0 corresponding to perfect azimuthal

symmetry and 1 corresponding to a delta function concentrating all of the flux density at a single

orientation angle. For instance, the simple crescent models used as synthetic sources in Paper IV

have angular brightness profiles I(θ) ∝ 1 + 2A cos (θ − η), where 0 ≤ A ≤ 1/2.

The last parameter is the ring fractional central brightness (or inverse contrast ratio) fC. This

quantity is computed as the ratio of the mean brightness interior to the ring to the mean brightness

around the ring. To define the interior brightness, the code averages over a disk of radius 5µas

centered in the ring center. That is,

fC =
⟨I(r, θ)⟩θ,r∈[0,5µas]

⟨I(d/2, θ)⟩θ
. (7.8)

This statistic has an extremely large scatter across the Top Sets, primarily because the interior

brightness can become arbitrarily low in RML imaging. Thus, the imaging methods explored in

Paper IV only securely identify an upper limit on fC.

7.3 Tests with syntheধc data reconstrucধons

Paper IV tested the analysis methods described in Section 7.2 on image reconstructions of synthetic

data from a crescent model with asymmetry parameter A = 0.23 oriented at η = 150◦, and on a
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Figure 7.3: Measurements of ring features on fiducial reconstructions of a crescent model (top row) and a GRMHD
simulation snapshot (bottom row) from images reconstructed with the fiducial parameters for three imaging
pipelines (Figure 24 of Paper IV). From left to right, panels show the measured ring diameter d, width w, and
orientation angle η. The DIFMAP results are shown for images restored with both a 10µas (cyan) and a 20µas
(blue) Gaussian beam. The eht-imaging (red) and SMILI (green) results are shown for the unblurred images. Solid
lines indicate the ground truth values of the three quantities in the crescent model, and the photon ring diameter
of the GRMHD simulation. Dashed lines indicate the measured values from the ground truth images, and dotted
lines indicate the measured values from the ground truth images convolved with a 20µas FWHM circular Gaus-
sian beam. The error bars are computed as the quadrature sum of the measurement uncertainty from the fiducial
images (Section 7.2) and the median absolute deviation of the parameter estimates across the Top Set.

GRMHD simulation image from Paper V.2 For both synthetic sources, the ring features defined in

Section 7.2 were measured from every image reconstructed with all the parameter combinations in

the M87 Top Sets (see Table 3 of Paper IV).

The results of this analysis for the diameter (d), width (w), and orientation angle (η) are dis-

played in Figure 7.3. The points shown correspond to the measured quantities from the fiducial

reconstructions. These measurements have two distinct sources of error: the intrinsic measurement

uncertainty on each quantity from a single image, and the uncertainty in the quantity from varying

the imaging parameters across the Top Set. These two sources of error are combined in the error

bars in Figure 7.3 by taking the quadrature sum of the measurement uncertainty from the fiducial

image and the median absolute deviation of the parameter estimates across the Top Set.
2This section was originally published as Section 9.2 of Paper IV.
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In both simulated data tests, the ring diameter d is the most accurately recovered quantity;

however, the diameter measurement is correlated with the ring width and is biased downward by

several microarcseconds when the image is blurred (see Section 7.5). In the simulated crescent,

the diameter of the unblurred model is 44µas; the value measured using the same approach on

the ground truth image is pushed down to 43µas because of the Gaussian convolution. Taking

the median across all days, the diameters extracted from the fiducial DIFMAP crescent model recon-

structions have a median value of 40 ± 2µas when restored with a 20µas FWHM beam. When

they are instead restored with a smaller 10µas beam, the DIFMAP results become more accurate

(compared to the model values), with a measured diameter of 43± 2µas. The RML crescent model

reconstructions measure a median diameter of 42± 1µas.

The GRMHD image (Paper V) has a lensed photon ring with a diameter of 9.79M/D ≈ 35.5µas;3

REx recovers a value of 36.5 µas from the ground truth image, indicating that even with a perfect

image reconstruction, fine-scale substructure and extended flux in an image can bias the ring

diameter measurement away from the photon ring value (see Paper VI). The ring diameter measured

from the eht-imaging and SMILI GRMHD fiducial reconstructions (Figure 7.3) has a median value

of 38 ± 2µas across all four observed days. However, for this data set, the DIFMAP results are

strongly dependent upon the chosen restoring beam. The DIFMAP reconstructions restored with a

20µas beam lack prominent rings, leading to a poor recovery of the ring diameter (26 ± 20µas).

When blurred with a smaller 10 µas beam, the DIFMAP results align with the RML methods but

have larger uncertainties due to larger scatter across the Top Set (37± 11µas).

As shown in Figure 7.3, the measured orientation angles from the crescent model reconstructions

using the RML imaging pipelines have a median value of 141◦ ± 5◦, moderately discrepant from

the true value of 150◦. The values from the DIFMAP images are even more discrepant and are
3The simulation used an assumed black hole mass M = 6.2×109 M⊙ and dimensionless spin a∗ = 0.9375,

observed at a distance D = 16.9Mpc and 17◦ inclination (Paper V).
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unstable among days. The GRMHD image has no defined a priori orientation angle; the measured

orientation angles from all pipelines are more stable than for the simple crescent model, and they are

consistent with the value measured from the blurred simulation image (105◦). The results of both

the GRMHD and crescent model reconstructions indicate that this procedure may underestimate

uncertainties on η.

Both the crescent and GRMHD models have intrinsic widths that are much narrower than the

resolution of the EHT. As expected from applying the 20µas restoring beam, the DIFMAP recon-

structions give a larger measurement of ring width than the RML reconstructions. When a 10µas

FWHM beam is used to restore the DIFMAP images, the measured widths align with the RML results.

Nonetheless, all reconstructions have widths that are systematically biased upward from the true

values, and the extracted ring widths from image domain fitting can at best be viewed as upper

limits.

Similarly, the brightness depression contrast ratio fC is highly sensitive to the image resolution

and particular imaging choices. In particular, the Top Sets from the RML imaging pipelines have

an extremely large scatter in fC. When blurred to the same 20µas resolution, both RML and

CLEAN methods give measurements of fC that are consistently in the range 0.2–0.5 (Section 7.5).

Consequently, the current reconstructions of horizon-scale structure in M87 can only determine an

upper limit for fC.

For all three imaging pipelines, the scatter in ring diameters across the Top Set (typically ≲ 1µas)

is subdominant to the intrinsic measurement uncertainty estimated from a single image (typically

1-2µas). Thus, choices made in the imaging process do not significantly affect the measured ring

diameter from these models. In contrast, the other measured features have error budgets which are

more evenly divided between intrinsic uncertainty in a single image and the scatter across the Top

Set.
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Table 7.1: Diameter d, width w, orientation angle η, asymmetry A, and floor-to-ring contrast ratio fC measured
from the fiducial M87 images for each day from each imaging pipeline (Table 7 of Paper IV).

d (µas) w (µas) η (◦) A fC
DIFMAP

Apr 5 37.2 ± 2.4 28.2 ± 2.9 163.8 ± 6.5 0.21 ± 0.03 5×10−1

Apr 6 40.1 ± 7.4 28.6 ± 3.0 162.1 ± 9.7 0.24 ± 0.08 4×10−1

Apr 10 40.2 ± 1.7 27.5 ± 3.1 175.8 ± 9.8 0.20 ± 0.04 4×10−1

Apr 11 40.7 ± 2.6 29.0 ± 3.0 173.3 ± 4.8 0.23 ± 0.04 5×10−1

eht-imaging

Apr 5 39.3 ± 1.6 16.2 ± 2.0 148.3 ± 4.8 0.25 ± 0.02 8×10−2

Apr 6 39.6 ± 1.8 16.2 ± 1.7 151.1 ± 8.6 0.24 ± 0.02 6×10−2

Apr 10 40.7 ± 1.6 15.7 ± 2.0 171.2 ± 6.9 0.23 ± 0.03 4×10−2

Apr 11 41.0 ± 1.4 15.5 ± 1.8 168.0 ± 6.9 0.20 ± 0.02 4×10−2

SMILI

Apr 5 40.5 ± 1.9 16.1 ± 2.1 154.2 ± 7.1 0.27 ± 0.03 7×10−5

Apr 6 40.9 ± 2.4 16.1 ± 2.1 151.7 ± 8.2 0.25 ± 0.02 2×10−4

Apr 10 42.0 ± 1.8 15.7 ± 2.4 170.6 ± 5.5 0.21 ± 0.03 4×10−6

Apr 11 42.3 ± 1.6 15.6 ± 2.2 167.6 ± 2.8 0.22 ± 0.03 6×10−6

7.4 Results for M87 EHT images

Table 7.1 lists the values of all ring parameters measured for the fiducial EHT 2017 M87 reconstruc-

tions for each day from the three parameter surveys.4 As in the previous Section, for the fiducial

images, the uncertainties are computed by adding the scatter in the measured quantities across the

Top Sets in quadrature to the intrinsic measurement uncertainty.

Figure 7.4 plots the measured diameter, width, and orientation angle from each method over

all four days. Across all days, the DIFMAP reconstructions recover a median diameter of 40 ± 3µas

when restored with a 20µas beam and 44 ± 5µas when restored with a 10µas beam. The RML

methods recover a median diameter of 41±2µas. For each imaging pipeline, there is slight upward

trend in the diameter over time; it increases by ≈ 2µas from the first to the last day of the

observing campaign. However, this trend is well within the estimated uncertainty of the diameter
4This section was originally published as Section 9.3 of Paper IV.
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Figure 7.4: Measured ring properties on the fiducial images of M87 produced with all three imaging pipelines (Fig-
ure 25 of Paper IV). From left to right, panels show the measured ring diameter d, width w, and orientation angle
η. The DIFMAP results are shown for images restored with both a 10µas (cyan) and a 20µas (blue) Gaussian beam.
The eht-imaging (red) and SMILI (green) results are shown for the unblurred images. The three imaging pipelines
produce consistent measurements of the ring diameter across all days. The measured orientation angles indicate a
modest shift between April 5/6 and 10/11. The error bars are computed in the same manner as in Figure 7.3.

measurements. The measured ring diameters are consistent among all imaging pipelines and largely

unchanged from the first April 11 images produced from early-release engineering data (Section 5

of Paper IV). However, the other parameters are less consistent from these first images to the final

fiducial images selected by the parameter survey, indicating more sensitivity in these parameters

to the data quality and the imaging method.

As in the synthetic data results presented in Figure 7.3, the beam-convolved DIFMAP reconstruc-

tions produce larger measured widths than the RML methods. The width measurements become

consistent when the DIFMAP images are restored with a smaller 10µas beam, but the ring width re-

mains limited by the resolution of the EHT. Thus, from these imaging results, one can only firmly

conclude that the ring width is ≤ 20µas.

In the reconstructions from all three imaging methods, there is a counterclockwise trend in the

orientation angle from April 5 to 11, consistent with the apparent shift in brightness along the

ring. However, this ≈ 20◦ counterclockwise shift could be the result of spurious azimuthal structure

introduced in the imaging process. The tests on synthetic data indicate that the method presented

in this section may underestimate orientation angle uncertainties (see Figure 7.3). Even if this shift

in angle is physical, it does not necessarily indicate continuous motion or a flow direction associated
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Figure 7.5: From left to right, the measured diameter d, width w, orientation angle η, and central brightness ratio
fC from the April 11 fiducial images blurred with circular Gaussian kernels of increasing FWHM α (Figure 35 of
Paper IV). The solid lines indicate the measured value, and the shaded regions give the 1σ uncertainty as defined
in Section 7.2 (these uncertainties do not include a contribution from scatter across the Top Set). The dashed line
on the first panel shows the prediction of Equation 7.11 for the measured diameter dmeas as a function of the blur
kernel assuming dtrue = 42µas. The dashed line in the second panel shows the FWHM of a 15µas 1D Gaussian
convolved with the kernel of FWHM α (Equation 7.12). Because the DIFMAP images are fundamentally composed
of point sources, the measurements from these images become highly uncertain when α <∼ 10µas.

with the black hole accretion flow in M87, and it is opposite to the inferred rotation direction for

the large-scale jet (Walker et al., 2018, see Chapter 3).

7.5 Finite resoluধon bias on ring parameters

In addition to uncertainties from thermal noise, systematic noise, and algorithmic imaging assump-

tions, estimated image properties are necessarily limited by the image resolution.5 Image structure

at scales finer than the diffraction limited resolution can bias properties such as the magnitude and

location of the maximum image brightness.

As a simple example, a thin ring has a finite resolution bias in both width and diameter. If an

infinitesimally thin ring of diameter d has the form:

Iδring(r, θ; d) =
1

πd
δ(r − d/2), (7.9)

5This section was originally published as Appendix G of Paper IV.
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a ring of finite thickness can be generated by convolving this image with a circular Gaussian kernel

of FWHM α:

Iring(r, θ; d, α) =
4 ln 2

π2α2d

∫
r′ dr′dθ′δ

(
r′ − d/2

)
exp

[
−4 ln 2

α2

(
r2 + r′2 − 2rr′ cos θ′

)]
. (7.10)

Paper IV, Appendix G shows that in the limit α ≪ d, only keeping terms to leading order in r/d

and α/d, the FWHM of the blurred ring is approximately equal to α. Furthermore, the angular

diameter of peak brightness of the convolved ring is

dtrue ≈
dmeas

1− 1
4 ln 2

(
α

dmeas

)2 , (7.11)

where the approximation is accurate to leading order in α/dmeas. As a concrete example, an

infinitesimally thin ring with true diameter d = 44µas and width α = 15µas will have its measured

diameter biased downward by ≈ 2µas.

More generally, convolving a ring that has a Gaussian profile of intrinsic FWHM wtrue with a

circular Gaussian kernel with FWHM α gives an effective width

wmeas ≈
√
w2

true + α2, (7.12)

and the diameter bias of a blurred finite width ring is still given by Equation 7.11 to first order.

While the simple Gaussian convolution assumed in this example only crudely approximates the

effects of finite resolution on reconstructed images, it indicates that for images dominated by a thin

ring, estimated diameters (widths) will be biased downward (upward) by the finite resolution of an

image reconstruction. For the fiducial image measurements in Section 7.4, the diameter bias from

this finite-resolution effect would be maximum in the case of an infinitesimal intrinsic ring, with
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Figure 7.6: Unwrapped ring profiles of the fiducial images from April 5–11 (top to bottom) and for the three imag-
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sured ring width. Vertical blue lines give the orientation angle η and its uncertainty. The magenta cross marks the
peak brightness in each reconstruction.

α then approximately corresponding to the measured width. Thus, the finite-resolution diameter

bias is at most a few µas.

Figure 7.5 explores the dependence of several estimated ring parameters on the image angular

resolution. Using the fiducial M87 images on April 11 from all three imaging pipelines, Figure 7.5

shows the ring parameters computed after convolving each image with a circular Gaussian kernel

of FWHM α in the range 0 < α < 20µas. The DIFMAP images are fundamentally composed of point

sources (“CLEAN” components). When these point sources are restored with a Gaussian beam

of FWHM α ≲ 10µas, the CLEAN components still appear in the convolved image as individual

point sources. As a result, the feature extraction methods of Section 7.4, which assume a smooth

ring structure, have large uncertainties when extracting ring parameters from these images. This

uncertainty is particularly apparent in the orientation angle measurement. The RML images, in

contrast, have a finite width and smooth structure even at α = 0. As a result, their parameters

vary smoothly and have similar uncertainties at all values of α.
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The leftmost panel of Figure 7.5 shows that the dependence of the measured diameter on α closely

follows the bias predicted by Equation 7.11. The fiducial images have a scatter of approximately

1µas across the different imaging methods but an uncertainty of≈ 3–4 µas across the different values

of α. Thus, when extracting physical parameters from the measured diameter, it is important to

take into consideration the additional bias and uncertainty induced by this effect.

For small values of the restoring beam α, Figure 7.5 shows that the measured width w of the

RML reconstructions follows the prediction of Equation 7.12. For larger values of α > 15µas, the

kernel size approaches the ring radius, and higher order effects become important (i.e., contributions

from the opposite side of the ring in the convolved width). Because it is intrinsically built of point

sources that are not confined to a δ-function in radius, the DIFMAP image does not follow this simple

prediction for the increase in width with blurring kernel size, and it instead increases more rapidly

to converge with the RML result at α ≈ 20µas.

For the RML reconstructions (and for DIFMAP with α > 10µas), the measured orientation angle

is relatively unaffected by the Gaussian convolution. In contrast, of all the parameters defined in

Section 7.2, the fractional central brightness fC between the average ring center brightness and the

rim varies the most with resolution. In the absence of a restoring beam, both SMILI and DIFMAP

produce rings with practically zero brightness in the ring center; as a result of this near-zero floor, fC

is extremely small (fC < 10−5). As convolution with a finite Gaussian kernel fills in the center of the

ring, fC increases rapidly with α by several orders of magnitude. In contrast, because they include

inverse-tapering of the initial visibility data and a final blurring with a 5µas Gaussian (Paper V,

Section 6), the eht-imaging fiducial reconstructions always have a non-zero central brightness. All

three imaging methods give fC ≈ 0.3 for α = 20µas; this value represents an upper bound on fC

at the most conservative image resolution.
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7.6 Radial and azimuthal profiles
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Figure 7.7: One-dimensional radial brightness profiles of the three fiducial M87 images on April 11 (Figure 37 of
Paper IV). For each image, radial profiles in the semicircle centered on η are plotted with negative values of r,
and radial profiles through the opposing semicircle centered on η + 180◦ are plotted with positive r. The solid
curves show the median profile over the corresponding semicircle, the darker band shows the 25th to 75th per-
centile range, and the lighter band shows the full range of profiles in the fiducial images.

Identifying a ring in the fiducial images allows the brightness distribution around the M87 shadow

to be “unwrapped” and displayed in I(r, θ) space.6 Figure 7.6 shows these unwrapped ring profiles

of the fiducial images for all pipelines and days. In addition to the larger width of the DIFMAP

reconstructed rings, the difference in position angle of the peak brightness is evident in these un-

wrapped profiles. Figure 7.6 also indicates visually that the measured brightness-weighted position

angle η (Table 7.1) is more consistent than the angle of peak brightness across different reconstruc-

tion pipelines. η shows counterclockwise evolution between April 5 and April 11 in the fiducial

images for all three methods.

Figure 7.7 shows radial profiles taken across the rings identified in the three April 11 fiducial

images, with the DIFMAP image restored by the nominal 20µas beam. For each image, the ring

was divided in two by the line perpendicular to the measured orientation angle. On each half-ring,
6This section was originally published as Appendix I of Paper IV.
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Figure 7.8: One-dimensional angular profiles of M87 on April 11 from the three imaging methods (Figure 38 of Pa-
per IV). For each method, the solid line shows the angular profile obtained from the fiducial image, the darker
band shows the 25th to 75th percentile range across the Top Set, and the lighter band shows the full Top Set
range. For the RML methods, the dashed line shows the angular profile from the fiducial image blurred to the res-
olution of the DIFMAP image. The “knot” features in the unblurred eht-imaging and SMILI reconstructions show
significant variation across the Top Set, suggesting that these features are sensitive to imaging parameter choices.

the median angular profile is denoted by solid lines in Figure 7.7), and the 25–75% and 0–100%

percentile ranges of variation are shown as bands around the median. Figure 7.7 shows that the

peak-to-peak ring diameters measured from the three imaging methods are broadly consistent, as

indicated by the diameter measurements plotted in Figure 7.4. The overall sense of ring asymmetry

recovered from each imaging pipeline is also consistent; the ring is always brighter in the south.

However, the shapes of the median radial profiles differ among the different imaging methods due

to the different assumptions made in the imaging process. The DIFMAP reconstructions in Figure 7.7

are restored with a 20µas beam, so they produce wider, shallower radial profiles. In contrast, the

SMILI images tend to zero out low brightness regions, and the fiducial images have a near-zero

brightness depression in the center of the ring. The eht-imaging results are higher-resolution than

the DIFMAP results, but they have a less dramatic brightness depression that the SMILI images as a

result of the choice to include a 5µas maximum resolution in the eht-imaging script, as well as the

use of maximum entropy regularization.
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Figure 7.8 shows the angular profiles along the ring from the three imaging pipelines on April 11

data. While Figure 7.7 showed variability in the radial profiles from the individual fiducial images,

Figure 7.8 considers variability in the azimuthal structure across the entire Top Set. In each panel,

the solid line represents the fiducial value of the angular profile, and the bands show variability

across the Top Set.

The median DIFMAP angular profile in Figure 7.8 is smooth and shallow, and it is distinct from

those of the RML methods due to its 20µas restoring beam. The dashed lines in the eht-imaging

and SMILI panels show the angular profiles from the fiducial image blurred to match the DIFMAP

resolution. When blurred, the angular profiles from the eht-imaging and SMILI images better match

the broad DIFMAP profile, but they still differ in the measured orientation angle and the position of

the brightest location on the ring.

The angular profiles for the unblurred eht-imaging and SMILI reconstructions are similar, with the

0.1 Jy difference in total flux density in these reconstructions manifesting in an overall lower profile

for the SMILI reconstruction. The “knot” features in the eht-imaging and SMILI reconstructions

show significant variation across the Top Sets. This variability suggests that these ring features

are highly sensitive to imaging parameter choices, and that they are potentially artifacts of the

limited (u, v) coverage. In general, the azimuthal structure in the reconstructed images from all

three imaging pipelines is more variable than the radial structure, making measurements of the

orientation angle intrinsically more uncertain than measurements of the ring diameter.

7.7 Weighing a black hole from an image

Measurements of the diameter of the ring feature in the first EHT images of M87 consistently find

the diameter d ≈ 40µas (Table 7.1). The lensed photon ring of a supermassive black hole has an
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angular diameter in the range d ≈ (5.0 ± 0.2)θg, depending on its inclination and spin (Bardeen

et al., 1972). The angular size of a gravitational radius is

θg =
GM

c2D
. (7.13)

For a distance D = 16.8 Mpc to M87 (chosen based on three recent studies summarized in Paper VI,

Appendix I), the ring in the EHT images is thus consistent with the lensed photon ring or shadow

boundary of a ∼ 6.5× 109M⊙ supermassive black hole (Paper IV).

To more rigorously measure the mass of the black hole from the ring size requires evaluating

biases and uncertainties from several sources including the finite image resolution bias explored in

Section 7.5, image structure outside the photon ring, the black hole spin, and the distance to M87.

For the first EHT results, this analysis was performed in detail in Paper VI for measurements from

both geometric model fits and image reconstructions. The following section presents a simplified

version of the Paper VI analysis as applied only to the eht-imaging results reported in this chapter

(Table 7.1).

In particular, the image domain analysis in Paper VI, Section 7 measures the black hole mass by

finding the factor α (not to be confused with the restoring beam size in Section 7.5) that relates

the measured diameters in Table 7.1 with the gravitational radius angular size θg:

d = αθg (7.14)

If the measured ring feature in these images were to correspond exactly to the lensed photon ring

diameter, α would be in the range 9.6θg < α < 10.4θg (Paper VI). However, in realistic GRMHD

simulations (including the two-temperature M87 simulations of Chapter 4), the measured ring

diameters from images with degraded resolution do not correspond perfectly to the photon ring
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diameter that is known a priori. Two effects contribute to this discrepancy. First, the diameter-

width bias explored in Section 7.5 tends to reduce the ring diameter if the image is analyzed with

less-than-perfect resolution. Second, as seen in GRMHD reconstructions, not all emission from the

near-horizon region is expected to be concentrated in the photon ring. Some emission from the

surrounding accretion flow and jet will contribute to a nonzero brightness both inside and outside

the ring; depending on where this extra brightness lives in the image plane, it can bias the ring

diameter inwards or outward.
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Figure 7.9: Histogram of REx measurements of the scale factor α = d/θg from eht-imaging reconstructions (using
the M87 fiducial script) of the J+ calibration data set of GRMHD snapshot images, as described in Section 7 of
Paper VI. The blue curve is the best-fit normal distribution to the data. Note that this histogram contains outlier
points from poor image reconstructions that are not included in the analysis in Paper VI, Section 7.

To measure θg from the REx measurements of the diameter d, Paper VI first measured α and

its associated uncertainty from a suite of 103 snapshot images (“J+”) spanning a wide range

of GRMHD simulations with different physical parameters (e.g., black hole spin, magnetic flux

on the horizon, post-processing electron temperature prescription) taken from the image library

presented in Paper V. Synthetic data were generated from these images with eht-imaging (following

the procedure described in Paper IV and Appendix C with realistic thermal noise, station gain
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errors, and polarization leakage) on the (u, v) points corresponding to the four days of EHT 2017

observations. Images of all the J+ GRMHD data sets were then reconstructed using the fiducial

imaging scripts from each pipeline and the ring diameters were measured using REx. While Paper VI

considers results from all three imaging pipelines, the remainder of this section focuses only on the

eht-imaging results.

Figure 7.9 shows a histogram of the resulting measurements of α from the full set of GRMHD

snapshot images, as well as a best-fit normal distribution to the histogram. The median measure-

ment of α from this set is 10.71 ± 0.59µas, where the quoted uncertainty is the median absolute

deviation of the set of α values. Fitting a normal distribution to the histogram measures a mean

and standard deviation or α of

α = 10.80± 0.97. (7.15)

The central value of α in this set is biased upward from the range of lensed photon ring diame-

ters produced in the Kerr metric (9.6θg–10.4θg). This bias is primarily the result of emission in

the GRMHD simulation from outside the photon ring contributing to the brightness around the

reconstructed ring (Paper V; Paper VI).7

When converting a diameter measurement d to a measurement of θg for images of M87’s super-

massive black hole, the “theory error”, or the scatter in α from the diameter measurement from

different GRMHD snapshots dominates the intrinsic uncertainty in the diameter measurement from

the feature extraction method reported in Table 7.1. Taking April 11 as a representative day, the
7Neither of these measurements of α is exactly the same as the value quoted in Paper VI, Table 6 for

eht-imaging. They derive the measurement of α and its associated error budget with fits to generalized λ
distributions. Furthermore, the analysis in this section includes outlier points from poor image reconstruc-
tions that are dropped in Paper VI. The aim in this section to to provide a slightly less rigorous analysis
than the full Paper VI procedure that still captures the main features of the GRMHD calibration.
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fiducial image measurement of d from Table 7.1 is

d = 41.0± 1.4µas (eht-imaging April 11 fiducial reconstruction), (7.16)

where, as in Table 7.1, the uncertainty includes contributions from both the imaging method and the

scatter in d across the Top Set. Including both the measurement uncertainty and the uncertainty

in α gives a measurement of the gravitational angular scale of M87:

θg = d/α = 3.80± 0.36. (7.17)

The estimate of θg in Equation 7.17 is very close to the value reported in Table 6 of Paper VI,

θg = 3.79+0.42
−0.37 µas, derived from the average diameter measured from the eht-imaging Top Sets on

all four days.

Finally, having measured d from the April 11 eht-imaging fiducial reconstruction of M87, and

calibrating to a set of GRMHD reconstruction measurements made using the same script to find

θg, it is possible to estimate the black hole mass M = c2Dθg/G. The distance to M87 used in

Paper VI is D = 16.8± 0.8 Mpc. Thus,8

M = (6.47± 0.62)× 109M⊙. (7.18)

For comparison, the final mass measurement in Paper VI derived three independent analysis

pipelines – geometric model fitting, image feature extraction with multiple pipelines, and direct

GRMHD model fitting – is (6.5 ± 0.7) × 109M⊙, in good agreement with this section’s less care-

ful analysis. The EHT’s measurement of the mass of the supermassive black hole in M87 results

8The factor c2

G 1µas = 1.0128× 108M⊙.
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from directly imaging the emission from the near-horizon region. It is in excellent agreement with

the Gebhardt et al. (2011) measurement (scaled for this distance) of 6.14+1.07
−0.62 × 109M⊙ from stel-

lar dynamics, but it is inconsistent with the gas dynamical measurement of Walsh et al. (2013)

(3.45+0.85
−0.26 × 109M⊙).

7.8 Summary and conclusions

The April 2017 Event Horizon Telescope observations were the first to produce an image of the

“shadow” of a supermassive black hole. The lensed photon ring and surrounding emission apparent

in the 230 GHz EHT images of M87 (Figure 7.1) is the product of synchrotron emission in the black

hole accretion flow and jet only a few gravitational radii from the event horizon, including from the

photon orbit at 1− 3 rg.9 The black hole mass inferred from these images is (6.5± 0.7)× 109M⊙,

implying that M87 is one of the most massive black holes in the observable universe.

The eht-imaging library (Chapter 6) played a crucial role in producing these first images of

a black hole shadow. eht-imaging was used both in the initial, blind imaging of the M87 data

and as one of three imaging pipelines in a systematic parameter search exploring a large range of

choices in imaging parameters and their effects on the final image. Top Sets of best-performing

parameters were selected from these surveys systematically based on their performance on synthetic

data sets, and the final results from all three pipelines were consistent. At 230 GHz, the image of

M87 is dominated by a ring of diameter d ≈ 40µas, with a width w ≲ 15µas, and with enhanced

brightness toward the south (Paper IV). These characteristic image features are consistent with

simulated images from a wide range of GRMHD simulations of a hot, thick accretion flow around a

black hole of mass M ≈ 6.5× 109M⊙, with a nonzero black hole spin pointed away from the Earth.

Notably, they are consistent with the predictions from the high-spinning, MAD, two-temperature
9For a spin a = 1 and a = 0, respectively.
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simulations of the M87 accretion flow presented in Chapter 3. To launch the powerful jet observed

in VLBI images at lower frequencies, magnetic fields in this accretion flow must be extracting

rotational energy from the black hole by the Blandford-Znajek mechanism, and the overall sense

of jet rotation at lower frequencies and the observed asymmetry in the ring observed by the EHT

imply that the black hole spin vector is oriented anti-parallel to the line of sight (Paper V).

These images are the first direct probes of the inner accretion flow and jet launching region of a

black hole; they represent only a glimpse of the potential science opened up by the EHT. Future

EHT observations of M87 (including processing and imaging of the 2018 data already collected)

will refine the measurement of the black hole mass and enable more precise tests of simulations of

M87 with different assumptions about the accretion and plasma physics, such as those presented

in Chapter 4 (Chael et al., 2019b). Polarimetric and multi-frequency images of the 2017 and 2018

M87 data will provide more stringent constraints on the origin of the emission in the accretion flow,

the magnetic field strength, and the temperature of the emitting electrons. Repeated observations

will further constrain time evolution on day-to-day timescales such as that seen across the week of

observation in 2017 (Paper IV), potentially connecting these observations to the motion of magnetic

field lines around the black hole event horizon. Eventually, with a combination of an expanded

array and more advanced imaging techniques, future EHT images with increased dynamic range

will be able to image the extended jet at the launching point in addition to the bright photon ring.

These observations will enable further tests of the jet launching physics and energy extraction from

the black hole and directly connect the energy delivered out of the entire galaxy at kpc scales to

the black hole horizon.
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Observational data

A.1 Sgr A*

The observed SED of Sgr A∗ presented in Chapter 2 (Figure 2.4) are mostly the same as plotted

in the spectra in Ressler et al. (2017) with some additions.

Radio and millimeter points are from Falcke et al. (1998) over the range 1.46–235.6 GHz, from An

et al. (2005) over the range 0.33–42.9 GHz, from Bower et al. (2015) in the range 1.6–352.6 GHz,

and from Liu et al. (2016a) and Liu et al. (2016b) in the interval 93–709 GHz and at 492 GHz,

respectively. 230 GHz measurements of the total flux density using the Event Horizon Telescope

(EHT) are taken from Doeleman et al. (2008) and Johnson et al. (2015).

Infrared upper limits are from Cotera et al. (1999) in the range 8.7–24.5 µm, from Genzel &

Eckart (1999) at 2.2 µm, and from Schödel et al. (2007) at 8.6 µm. Genzel et al. (2003) provide

infrared flux density measurements for both Sgr A∗’s quiescent state and flares at 1.76, 2.16, and

3.76 µm. Schödel et al. (2011) provide quiescent state measurements at 2.1, 3.8, and 4.8 µm, and

Witzel et al. (2012) report a quiescent value at 2.2 µm.

The observed range of X-ray flare luminosities over the range 2-10 keV is reported in Neilsen

et al. (2013), and the measurement of the quiescent X-ray luminosity is taken from Baganoff et al.
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(2003). As Neilsen et al. (2013) note that only about 10% of the X-ray quiescent luminosity is

produced in the inner accretion flow, Figure 4.9 plots the range between 10% and 100% of the

Baganoff et al. (2003) measurement as the lower shaded band.

Simple estimates of the root-mean-square (RMS) variability in the 230 GHz light curve are

plotted as 20 and 40% bands in Figure 2.5. Marrone et al. (2008), Yusef-Zadeh et al. (2009), and

Bower et al. (2015) all report a value of roughly 20% RMS variability relative to the mean. Finally,

the 230 GHz Sgr A∗ image size estimate in the E-W direction is from Event Horizon Telescope

data reported in Doeleman et al. (2008) and Johnson et al. (2015).

A.2 M87

Comparing the simulation SEDs of Chapter 3 with observations of M87 requires some care. Because

the total radio flux density along the extended jet of M87 is comparable to that of the significantly

brighter but compact region near the black hole (the “core”), a meaningful comparison requires

excising jet contributions that are outside the simulated domain. The data points in Chapter 3

(Figure 3.7) are based on Table 1 of Prieto et al. (2016), which compiles total flux density measure-

ments from radio to X-ray from M87 in its quiescent state, using only measurements that achieve

at least 0.4′′ resolution in order to securely exclude emission from the brightest jet knot, HST-1.

Prieto et al. (2016) have also compiled measurements of the total flux density of the most compact

component identified by VLBI observations (their Table 4). However, these latter measurements

have some notable limitations. For example, at 86GHz, Prieto et al. (2016) include the value

SL = 0.16 ± 0.07Jy measured by Lee et al. (2008) as the measured flux density on the longest

baseline for observations with the Coordinated (Global) Millimeter VLBI Array (CMVA/GMVA).

This approach is problematic because M87’s core is resolved at 86 GHz (Kim et al., 2018) and
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Table A.1: The total and compact radio spectrum of M87 from recent VLBI observations.

Frequency Total Flux Density Core Flux Density
[GHz] [Jy] [Jy]
15.4 2.2± 0.3 1.3± 0.1a

22 2.1± 0.1 1.2± 0.1b

43.1 1.6± 0.4 0.7± 0.2c

86.3 1.1± 0.5 0.8± 0.4d

230.0 2.05± 0.15 0.98± 0.05e

a19 MOJAVE observations from 2001-2011 (Lister et al., 2018).
b10 KaVA & 3 VLBA (24 GHz) observations from 2013-2014 (Hada et al., 2017).
c50 VLBA observations from 1999-2016 (Table 3 in Walker et al., 2018).
d5 GMVA observations analyzed by Kim et al. (2018).
e2 EHT observations: Doeleman et al. (2012) & Akiyama et al. (2015).

because interference among compact components can significantly affect the correlated flux density

on a single baseline. At 22 GHz, Prieto et al. (2016) include the compact flux density value 0.35 Jy

reported by Junor & Biretta (1995). However, during the observing epochs considered in Junor &

Biretta (1995), the total flux density of M87 was only ∼1.1 Jy, which is significantly lower than the

values measured more recently with the Very Long Baseline Array (VLBA) and the KVN/VERA

Array (KaVA) (Hada et al., 2017). The Junor & Biretta (1995) measurement is also lower than

the values measured at 15GHz and 43GHz since 2000 (Lister et al., 2018; Walker et al., 2018).

Because the simulation spectra in Chapter 3 are normalized to have a total flux density at

230GHz that matches EHTmeasurements taken in 2009 and 2012 (Doeleman et al., 2012; Akiyama

et al., 2015), Table A.1 provides updated estimates of the total and compact flux density of M87

from 15–230 GHz. For each row in Table A.1, the flux density of the compact component was

estimated from the peak flux density of a beam convolved VLBI image at that frequency. This pro-

cedure gives a direct comparison between simulated images and reconstructed images from VLBI.

Note that the total flux density measured with VLBI may still contain significant contributions

from outside the raytracing domain of the M87 simulations in Chapter 3, especially at centimeter

wavelengths.
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Simulation initial conditions

The simulation grid used in Chapters 2-4 is defined by a mapping that takes code coordinates

x1, x2, x3 to standard Kerr-Schild coordinates (r, θ, ϕ) in the Kerr metric (Gammie et al., 2003).

This coordinate mapping is exponential in r and concentrates grid cells near the equator. The

chosen functional form also naturally ‘cylindrifies’ grid cells somewhat at small radii closer to the

poles, expanding them laterally at small radii so that the coordinates in the inner region are more

cylindrical than spherical. This cylindrification speeds up the simulation by limiting the time step

constraint imposed by the Courant condition (Tchekhovskoy et al., 2011).

The KORAL grid is defined by the equations:

r = ex1 + r0,

θ =
π

2

{
1 + tan

[
πh0

(
(1− 2x2)

(
2p(y2 − y1)

(ex1 + r0)
p + y1

)
+(

x2 −
1

2

))]
cot
[
πh0
2

]}
,

ϕ = x3. (B.1)

The parameter r0 < 0 changes the grid spacing near the origin, with a smaller |r0| placing more

cells near the inner boundary rmin. Increasing the parameter h > 0 concentrates cells toward the
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Figure B.1: Coordinate grid and density of the initial torii for the four Sgr A∗ simulations in Chapter 2. The top
panel shows the initial torus for the two spin zero models R-Lo and H-Lo, and the bottom panel shows the torus
for the two spin 0.9375 models R-Hi and H-Hi. White contours indicate the dipolar magnetic field lines.
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Figure B.2: Coordinate grid and initial torii for the two spin 0.9375 M87 simulations in Chapter 3. The white con-
tours indicate the single loop of magnetic field lines in the initial conditions that leads the accretion disk to develop
into a MAD state.
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equatorial plane. Making y1 > 0 larger (at fixed h) increases the minimum polar angle at large r,

and increasing y2 > 0 increases the minimum polar angle at small r. Adjusting the index p > 0

changes how quickly the minimum polar angle at a given radius changes between the value at rmin

and the value at rmax. For all the Sgr A∗ simulations in Chapter 2, h0 = 0.7, y2 = 0.02, y1 = 0.002,

p = 1.3, and rmax = 5, 000. For the spin a = 0 Sgr A∗ simulations, r0 = −2 and rmin = 1.5, while

for a = 0.9375, r0 = −1.35 and rmin = 1. For the M87 simulations in Chapter 3, the paramaters

h0 = 0.7, y2 = 0.02, y1 = 0.002, and p = 1.3 are unchanged, but rmin = 1, rmax = 104, and

r0 = −1.35.

The initial plasma torii in all the simulations were set using the Penna et al. (2013) model, which

defines a torus that has an angular momentum profile in the equatorial plane that is proportional

to the Keplerian value by a factor ξ over a certain radial range [rk,min, rk,max]. The equatorial

plane angular momentum is constant outside these limits. The initial torus adiabatic index is fixed

at Γgas = 5/3. For Sgr A∗ (Chapter 2), the spin zero models R-Lo/H-Lo were initialized with

an inner torus edge at 10 rg and an angular momentum profile with values ξ = 0.708 times the

Keplerian value in the range [42rg, 1000rg]. The spin a = 0.9375 torus in models R-Hi/H-Hi was

nearly identical, except that the strong dependence of the Penna et al. (2013) model on spin means

that setting the inner edge at exactly 10rg produces a torus that nearly fills the entire grid. To

avoid this, the inner edge was set at 11 rg, keeping all other values fixed. In the M87 simulations

(Chapter 3), the inner edge was set at 10.5 rg, ξ = 0.7135, and the angular momentum is Keplerian

over the smaller range [42rg, 800rg].

To produce SANE accretion disks with little magnetic flux threading the horizon, the initial

magnetic field in the Sgr A∗ simulations was set up in the torus with alternating dipolar field loops;

the field polarity alternates roughly every ∼30 rg. To build up magnetic flux on the black hole and

produce magnetically arrested disks for the M87 simulations, the initial torii were threaded with a
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single field loop of constant polarity. In all the simulations, the the field strength was normalized

such that the minimum value of βi in the midplane was 10−2.

In all the simulations of both sources, the initial energy in electrons was taken to be 1% of the

total gas energy, with the remainder in the ions. The initial torus was surrounded by a static

atmosphere with an r2 density profile and negligible mass and energy density. The initial radiation

energy density was negligible everywhere. The initial torii and simulation grids used in Chapter 2

are displayed in Figure B.1, and the torus used in both M87 simulations in Chapter 3 is displayed

in Figure B.2.
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Appendix C
Synthetic data generation with

eht-imaging

The eht-imaging library produces synthetic visibilities from model images by computing their

Fourier transform, adding random thermal noise (Equation 5.8), and corrupting the data with

systematic station-based effects using the Jones matrix formalism (TMS). Diagonal terms in the

Jones matrices scale the measured amplitudes and phases, while off-diagonal terms in the Jones

matrices mix the measured polarizations. This ppendix describes the Jones matrix formalism used

in eht-imaging for adding gain errors and polarimetric leakage to simulated data.

For example, to generate a synthetic data set obs from a polarimetric Image object im observed

with an Array instance arr, including the full affects of atmospheric phase error, gain calibration

error, atmospheric opacity, field rotation, and polarimetric leakage, a user could call,

obs = im.observe(arr, tint, tadv, tstart, tstop, bw,

ttype='nfft', add_th_noise=True,

jones=True, inv_jones=True,

opacitycal=False, ampcal=False, phasecal=False,

dcal=False, frcal=False, rlgaincal=True,

tau=0.1, taup=0.1,

gainp=0.1, gain_offset=0.1,

dterm_offset=0.05)
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As in Section 6.2.4, tint is the scan integration time in seconds, tadv is the advance time between

scans in seconds, tstart and tstop are the start and stop time in hours, and bw is the observing

bandwidth.

ehtim takes circular polarizations as its primary basis. On a single baseline ij, the Fourier

transform of the image gives the uncorrupted visibility of each polarization (RR′
ij , LL′

ij , LR′
ij ,

RL′
ij), which are assembled into a 2× 2 correlation matrix:

V′
ij =

 RR′
ij RL′

ij

LR′
ij LL′

ij

 . (C.1)

The thermal noise variance on each baseline and polarization is given by Equation 5.8 and assembled

into a matrix σ2ij of the same form. The variance matrix σ2ij is acted on by the station Jones matrices

in the same way as the visibility matrix V′.

Including the effects of systematic and thermal noise, the simulated visibility matrix is

Vij = JiV′
ijJ

†
j +N (σij) , (C.2)

where Ji and Jj are the station Jones matrices. Jones matrices are enabled in a call to Image.observe

with the keyword argument jones=True. Each Jones matrix has the form:

J =

 gR eiφ dR gR

e−iφ dL gL gL

 , (C.3)

where gR, gL are the complex gain terms, dR and dL are the constant complex d-terms, and φ

is a term from field rotation. Typically, |g| should be less than unity due to losses in telescope

sensitivity.
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Table C.1: Field rotation parameters for the EHT stations.

Station Receiver Mount fpar fel φoff
ALMA Cassegrain 1 0 0
APEX Nasmyth-Right 1 1 0
JCMT Cassegrain 1 0 0
LMT Nasmyth-Left 1 −1 0
PV Nasmyth-Left 1 −1 0
SMA Nasmyth-Left 1 −1 45◦

SMT Nasmyth-Right 1 1 0
SPT Cassegrain 1 0 0

The complex gain terms include an absolute amplitude gain offset G and a random atmospheric

phase ϕ. For the purposes of EHT synthetic data, gR = gL because the atmosphere is not sig-

nificantly birefringent at millimeter wavelengths. However, ehtim can apply different right- and

left-circular polarization gains in constructing the Jones matrices if the keyword rlgaincal is set

to False. The complex gain terms are

gR = gL = G(t)eiϕ(t). (C.4)

In eht-imaging, setting phasecal=False in Image.observe results in a phase error ϕ(t) drawn from a

uniform distribution once per scan. The amplitude gain (setting ampcal=False) of a site at each time

has three components: one from nonzero atmospheric opacity Gatten(t), one intrinsic time-stable

component G1, and a time-varying intrinsice component G2(t):

G(t) = Gatten(t) |1− |G1|+G2(t)|1/2 . (C.5)

Both G1 and G2 are sampled from normal distributions with zero mean: G1 ∼ N (0, σG1) and

G2(t) ∼ N (0, σG2). The standard deviation of the stable part, σG1 is determined by the gain_offset

argument to Image.observe. The gain_offset keyword argument is 0.1 by default on all stations; in
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addition to passing in another float, the user can also pass a dictionary associating a unique value

of σG1 for each station. The standard deviation of the time-variable part, σG2 , is specified by the

gainp argument which is also 0.1 by default; like gain_offset, gainp can be set either to a constant

for all stations or to a dictionary providing a different uncertainty for each station.

The attenuation term Gatten(t) arises from the nonzero atmospheric opacity τ and the changing

source elevation angle θel(t):

Gatten = e−τ/(ϵ+2 sin θel), (C.6)

where ϵ = 10−10 prevents the fraction from diverging as the elevation angle θel → 0. The opacity τ

is formed as the sum of a measured value τ0 (stored as a column in the Obsdata.data table) and a

random component τ1:

τ = τ0 + τ1, (C.7)

where τ1 is constant in time and normally distributed, τ ∼ N (0, στ ). The standard deviation στ

can be specified in a call to Image.observe with the taup argument; taup is 0.1 by default and is

the same for all stations.

The complex d terms, dR and dL, are stationary in time. In addition to a stable measured part

d0 stored in an Array.tarr table, a user can assign a random component d1 drawn from a complex

circular normal distribution. That is, e.g.,

dL = dL ,0 + dL ,1, (C.8)

where dL ,1 ∼ N (0, σd). The standard deviation σd is set with the dterm_offset keyword argument;
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it is 0.05 by default, motivated by the estimates in Johnson et al. (2015) for EHT stations.1 Like

gain_offset and gainp, dterm_offset can either be passed as a float or a dictionary with station

name keywords.

The field rotation phase term φ in Equation C.3 has three possible contributions depending upon

the receiver mount type:

φ = felθel + fparψpar + φoff , (C.9)

where θel is the elevation angle, ψpar is the parallactic angle, and φoff is a constant offset. Cassegrain

mounts have fpar = 1 and fel = 0. Nasmyth mounts have fpar = 1 and fel = ±1, depending on the

handedness. For reference, the EHT station field rotation parameters are listed in Table C.1.

The effects of field rotation are deterministic and can be calibrated out in an a priori step. Fur-

thermore, estimates of the opacity and station d-terms may also be applied in a prioi calibration.

This a priori step can be simulated in Image.observe by setting inv_jones=True. This choice con-

structs the estimated inverse Jones matrices Jest ,j and applies them to the fully corrupted visibility

matrix Vij . The estimated Jones matrix contains the terms:

Jest = Gatten ,0

 1 eiφ dR ,0

e−iφ dL ,0 1

 , (C.10)

where Gatten ,0 = exp [−τ0/(ϵ+ sin θel)] is the measured attenuation with no random component,

and dL ,0, dR ,0 are the measured d-terms, with no random offset.
1The mean amplitude of the leakage terms is then 6.3%.

275



The a priori calibrated visibilities are then given by applying the inverse estimated Jones matrices

Vmeas,ij = [Jest,i]
−1
(

JiV′
ijJ

†
j +N (σij)

) [
J†

est,j
]−1

. (C.11)

Throughout, the variance matrix σ2ij is transformed in the same way as the visibility matrix.
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Text in this Appendix was previously published
in ApJ 857 (2018), 1, 23 (A. Chael, M. Johnson,
K. Bouman, L. Blackburn, K. Akiyama, and R.
Narayan).

Appendix D
Imaging gradients

This Appendix presents the expressions for the gradients of the various data and regularizer terms

(presented in Sections 5.2.2 and 5.2.3) that are used in the eht-imaging library.

D.1 Data term gradients

The equations below assume a DTFT matrix Fij (see Equation 6.1); the conjugate transpose matrix

F †
ij gives the adjoint DTFT matrix (note that since the visibility data is sparsely sampled, F †F ̸= 1).

The gradient of the complex visibility χ2 term (Equation 5.16) with respect to an image pixel Ii

(already presented in the main text as Equation 6.2) is

∂

∂Ii
χ2

vis = − 1

NV

∑
j

Re
[
F †
ij

(
Vj − V̂j
σ2j

)]
. (D.1)

The gradient of the visibility amplitude χ2 (Equation 5.17) is

∂

∂Ii
χ2

amp = − 2

NV

∑
j

Re
F †

ij

V̂j

Âj


(
Aj − Âj

)
σ2j

 . (D.2)
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For the bispectrum χ2 (Equation 5.18), the gradient is

∂

∂Ii
χ2

bispec = − 1

NB

∑
j

Re
[(

F †
1,ij

V̂ ∗
1,j

+
F †
2,ij

V̂ ∗
2,j

+
F †
3,ij

V̂ ∗
3,j

)(
(VB,j − V̂B,j)V̂B,j

σ2B,j

)]
, (D.3)

where an individual bispectrum measurement VB ,j = V1 jV2 jV3 j .

The closure phase χ2 (Equation 5.19) has a gradient

∂

∂Ii
χ2

cl phase = − 2

Nψ

∑
j

Im
[(

F †
1,ij

V̂ ∗
1,j

+
F †
2,ij

V̂ ∗
2,j

+
F †
3,ij

V̂ ∗
3,j

)(
sin(ψj − ψ̂j)

σ2ψ,j

)]
. (D.4)

And finally, the gradient of the closure amplitude χ2 term (Equation 5.20) is

∂

∂Ii
χ2

cl amp = − 2

NC

∑
j

Re
(F †

1,ij

V̂ ∗
1,j

+
F †
2,ij

V̂ ∗
2,j

−
F †
3,ij

V̂ ∗
3,j

−
F †
4,ij

V̂ ∗
4,j

)
(
AC,j − ÂC,j

)
ÂC,j

σ2C,j

 , (D.5)

and for log closure amplitudes (Equation 5.21) it is

∂

∂Ii
χ2

log cl amp = − 2

NC

∑
j

Re
[(

F †
1,ij

V̂ ∗
1,j

+
F †
2,ij

V̂ ∗
2,j

−
F †
3,ij

V̂ ∗
3,j

−
F †
4,ij

V̂ ∗
4,j

)
Â2

C,j
σ2C,j

log
(
AC,j
ÂC,j

)]
. (D.6)

D.2 Regularizer term gradients

The gradient of the entropy regularizer term SMEM (Equation 5.22) with respect to a pixel Ik is

∂SMEM
∂Ik

= −1

ζ

(
log Ik

Pk
+ 1

)
. (D.7)

The gradient of the ℓ1 norm regularizer Sℓ1 (Equation 5.23) is

∂Sℓ1
∂Ik

= −1

ζ
sign[Ik]. (D.8)
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This gradient is not continuous; it may be preferable to use a continuously differentiable approxi-

mation to the absolute value operator (Akiyama et al. 2017a,b; Paper IV).

The total variation regularizer STV (Equation 5.24) with respect to a pixel Ik,l (indexed now by

its x and y position) also has a gradient that is not continuously differentiable everywhere.

∂STV
∂Ik,l

= −1

ζ

[
2Ik,l − Ik+1,l − Ik,l+1√

(Ik+1,l − Ik,l)2 + (Ik,l+1 − Ik,l)2
+

Ik,l − Ik−1,l√
(Ik,l − Ik−1,l)2 + (Ik−1,l+1 − Ik−1,l)2

+
Ik,l − Ik,l−1√

(Ik+1,l−1 − Ik,l−1)2 + (Ik,l − Ik,l−1)2

]
. (D.9)

Again, singularities in the gradient can be accounted for by modifying the form of the ℓ2 norm to

include a small bias ϵ when the argument is zero (see Appendix A of Paper IV).

In contrast, the gradient of the Total Squared Variation regularizer STSV (Equation 5.25) with

respect to a pixel Ik,l is continuously differentiable:

∂STSV
∂Ik,l

= −2

ζ
[(2Ik,l − Ik+1,l − Ik,l+1) + (Ik,l − Ik−1,l) + (Ik,l − Ik,l−1)] . (D.10)

The total flux regularizer Stot flux (Equation 5.26) has a gradient (returning to a single index k

for each pixel):

∂Stot flux
∂Ik

= −2

ζ
(Ik − f) . (D.11)

Finally, the gradient of the centroid regularizer Scentroid (Equation 5.27) is

∂Scentroid
∂Ik

= −2

ζ
[(Ikxk − fδx)xk + (Ikyk − fδy) yk] . (D.12)
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Appendix E
A sample eht-imaging script

This Appendix presents a sample imaging script for eht-imaging, very similar to the one used to

generate the eht-imaging fiducial images of M87 presented in Chapter 7. The imaging script relies

only on ehtim funcions and concepts introduced in Chapter 6. It consists of several stages including:

(1) data preparation, (2) generation of an initial image, (3) initial self-calibration, (4) alternating

imaging and self-calibration stages in a loop, and finally (5) saving the final output and diagnostic

plots.

###############################################

# consensus_script_simple.py

# A simplified version of the Paper IV M87 imaging script

# March 19, 2019

###############################################

import ehtim as eh

import numpy as np

The first part of the script sets parameters used throughout the imaging process. These include

the data file to load, the number of pixels and field of view of the image to be produced, the FHWM

of the initial Gaussian, the weights αD and βR on the objective function χ2 and regularizer terms

(Equation 5.14), the convergence criterion, and the maximum number of iterations in each imaging

step. Unique to EHT data, the initial parameters also include the FWHM and flux density of a
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Gaussian for initial self-calibration of LMT baselines (since the LMT amplitude calibration was

particularly poor in 2017), and an a priori systematic noise tolerance to include on each baseline

based on each telescope’s estimated performance.

###############################################

# Imaging Parameters

###############################################

infile = './obs_m87_scanavg.uvfits' # input data file

outfile = './m87_out' # output file name

# image parameters

zbl = 0.6 # Total flux in Jy

npix = 64 # number of pixels

fov = 128 # field of view (uas)

prior_fwhm = 40 # FWHM of the initial/prior image in uas

# initial data weights

amp_w = 0.2 # weight on amplitudes

cphase_w = 1 # weight on closure phases

camp_w = 1 # weight on log closure amplitudes

# regularizer weights

simple = 100 # entropy regularizer weight

tv = 0 # TV regularizer weight

tv2 = 1 # TSV regularizer weight

l1 = 10 # l1 regularizer weight

flux = 1.e2 # Weight on the total flux regularizer

# other imager parameters

zero_uv_max = 1.e8 # Baselines shorter than this are effectively zero

syserr = 0.02 # Non-closing noise tolerance

stop = 1.e-4 # Convergence criterion

major = 3 # Number of convergence cycles on imaging & blurring

maxit = 100 # Maximum number of iterations for imaging

ttype = 'nfft' # Fourier transform type

transform = 'log' # enforce positivity ('log') or not (None)

282



updates = False # display updates as the imager progresses

# which sites to selfcal

self_cal_sites = ['SM','JC','AA','AP', 'LM','SP','AZ']

# frac gain tolerance below and above 1 for gains

gain_tol = [0.02,0.2]

LZgauss_flux = 0.6 # Flux density for initial self-cal Gaussian

LZgauss_size = 60 # FWHM (uas) for initial self-cal Gaussian

# Systematic noise tolerance for amplitude a-priori calibration errors

systematic_noise = {'AA': 0.012,'AP': 0.013,'AZ': 0.008,

'JC': 0.017,'LM': 0.18, 'PV': 0.012,

'SM': 0.018,'SP': 0.009}

The next step loads the data in the .uvfits file ‘obs_m87_scanavg.uvfits’ into an Obsdata object

and prepares the data for imaging. Many of the steps in this stage are unique to EHT reconstruc-

tions. For instance, because of the large gap between the short intra-site baselines (e.g., ALMA-

APEX) and VLBI baselines, the visibility amplitudes on the short baselines include contributions

from large-scale emission that are resolved out by even the shortest VLBI baselines (LMT-SMT).

Because the imager cannot produce an image with this missing flux density, the script rescales

these short baselines (< 108λ) to the user-specified total compact flux density (zbl).

This step also adds a systematic noise tolerance syserr to the reported thermal noise level σ

on each baseline; this additional noise tolerance reflects non-closing errors due to polarimetric

leakage and other factors not accounted for in the a priori calibration. Finally, the LMT’s a priori

calibration in 2017 was poor (Paper IV), with many scan dropouts from poor pointing. To account

for the LMT’s large gain errors, the short LMT baselines to the SMT are initially self-calibrated

to a compact Gaussian (with FWHM LZgauss_size and flux density LZgauss_flux) before imaging.
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###############################################

# Prepare the data

###############################################

# load the uvfits file

obs = eh.obsdata.load_uvfits(infile)

# Find the resolution of the observation

res = obs.res()

# Estimate the total flux density from AA-AP

zbl_tot = np.median(obs.unpack_bl('AA','AP','amp')['amp'])

# Rescale short baselines to excise contributions from extended flux.

if zbl != zbl_tot:

obs = obs.rescale_zbl(zbl, zero_uv_max)

# Reorder stations based on snr

obs.reorder_tarr_snr()

# Add non-closing systematic noise to the observation for imaging

obs = obs.add_fractional_noise(syserr)

# Make a static copy of the observation

obs_static = obs.copy()

# Self calibrate the problematic LMT to a Gaussian

if LZgauss_flux > 0.0 and LZgauss_size > 0:

# flag long baselines

obs_LMT = obs_static.flag_uvdist(uv_max=2e9)

# make Gaussian image

gausspriorLMT_size = LZgauss_size * eh.RADPERUAS

gausspriorLMT_dims = (gausspriorLMT_size, gausspriorLMT_size, 0, 0, 0)

gausspriorLMT = eh.image.make_square(obs, npix, fov)

gausspriorLMT = gausspriorLMT.add_gauss(LZgauss_flux, gausspriorLMT_dims)
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# derive LMT self-calibration solution from only short baselines

caltab = eh.selfcal(obs_LMT, gausspriorLMT,

sites=['LM'],

ttype=ttype,

caltable=True,

gain_tol=1.0)

# apply selfcal to full observation

obs = caltab.applycal(obs_static, interp='nearest', extrapolate=True)

The next section of the script prepares the initial image, which is also used as a prior image

for the MEM regularizer. The initial image for this M87 imaging script is a 40µas Gaussian

with 0.6 Jy of total flux density. The script adds this Gaussian to an empty image with the

built in Image method Image.add_gauss. Furthermore, the script also adds a weak (scaled by 10−3)

Gaussian component offset by the FWHM (gaussprior_dim). This additional offset Gaussian breaks

the perfect symmetry of the initial image and prevents initial singularities in the total variation

regularizer (Equation D.10).

###############################################

# Prepare the initial image

###############################################

# Make a Gaussian initial / prior image

# to avoid gradient singularities, add a slightly offset component

gaussprior_size = prior_fwhm*eh.RADPERUAS

gaussprior_dim = (gaussprior_size, gaussprior_size, 0, 0, 0)

gaussprior_dim_off = (gaussprior_size, gaussprior_size, 0,

gaussprior_size, gaussprior_size)

gaussprior = eh.image.make_square(obs, npix, fov*eh.RADPERUAS)

gaussprior = gaussprior.add_gauss(zbl, gaussprior_dim)

gaussprior = gaussprior.add_gauss(zbl*1e-3, gaussprior_dim_off)

Next, the script sets up the Imager object with the specified initial data weights, regularizer

weights, Obsdata object, and initial image. This instance of Imager is called imgr; the script uses

this instance for the rest of the imaging process, updating its internal attributes as needed when the
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data weights change or the Obsdata data object is self-calibrated. This section of the script also sets

up a helper function called converge; this function runs the Imager several times in succession with

imgr.make_image_I, replacing the initial image for the next imager run with the blurred output from

the last run. This procedure acts to smooth out spurious high-frequency structure not constrained

by the data and helps the imager avoid local minima in minimizing the objective function.

###############################################

# Prepare the imager

###############################################

# Define the imager

data_term1 = {'amp':amp_w, 'cphase':cphase_w, 'logcamp':camp_w }

data_term2 = {'vis':10*amp_w, 'cphase':10*cphase_w, 'logcamp':10*camp_w }

reg_term = {'simple': simple,

'tv' : tv,

'tv2' : tv2,

'l1' : l1,

'flux' : flux }

imgr = eh.imager.Imager(obs, gaussprior,

prior_im = gaussprior,

flux = zbl,

data_term = data_term1,

reg_term = reg_term,

stop = stop,

maxit = maxit,

ttype = ttype,

systematic_noise=systematic_noise,

cp_uv_min=zero_uv_max)

# Define a helper function to repeat imaging

# with blurring to assure good convergence

def converge(imgr, major=major, blur_frac=1.0):

imgr.make_image_I(show_updates=updates)

for repeat in range(major):
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init = imgr.out_last().blur_circ(blur_frac*res)

imgr.init_next = init

imgr.make_image_I(show_updates=updates)

return imgr

At this stage, the script begins the actual imaging and self-calibration procedure. The script first

images using χ2 terms on the visibility amplitudes, closure phases, and closure amplitudes. Then,

the script self-calibrates the station phase terms to the final image from this first round.

###############################################

# Imaging / Self-Calibration

###############################################

# First round of imaging

print("Imaging with visibility amplitudes and closure quantities...")

imgr = converge(imgr)

out1 = imgr.out_last()

out1_blur = out1.blur_circ(res)

# First round of self-calibration (phase-only)

print("Self-Calibrating phases...")

obs_sc = eh.selfcal(obs_static, out1, ttype=ttype, method='phase')

In the second round, the script replaces the original data obs_static in imgr with the self-

calibrated Obsdata object obs_sc. As a consequence, the amplitude χ2 term is replaced with a the

complex visibility term χ2
vis, and the weights on all the data terms are increased by a factor of 10

relative to the fixed regularizer weights. The script then runs converge again to produce an image,

and it follows this round of imaging with another round of self calibration on the phases. The

script then calibrates the LMT amplitude alone, and the data in imgr are replaced with the latest

self-calibrated data.
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# Second round of imaging, increasing the data term weights 10x

print("Imaging with visibilities and closure quantities...")

imgr.init_next = out1_blur

imgr.obs_next = obs_sc

imgr.dat_term_next = data_term2

imgr = converge(imgr)

out2 = imgr.out_last()

out2_blur = out2.blur_circ(res)

# Second round of self-calibration (phase for all sites; amp for LMT)

print("Self-Calibrating phases and LMT amplitude...")

obs_sc = eh.selfcal(obs_static, out2, ttype=ttype, method='phase')

caltab = eh.selfcal(obs_sc, out2, sites=['LM'], ttype=ttype,

method='both',

gain_tol=gain_tol, caltable=True)

obs_sc = caltab.applycal(obs_sc, interp='nearest', extrapolate=True)

The script then concludes with two final rounds of imaging and self-calibration. In the self-

calibration step, the script now solves for the amplitude and the phase offsets for all stations.

# Image and selfcal until end

for repeat_selfcal in range(2):

# Image

print("Imaging with visibility amplitudes and closure quantities...")

imgr.init_next = out2_blur

imgr.obs_next = obs_sc

imgr.systematic_noise_next = 0.01 #reset systematic noise

imgr = converge(imgr)

# Self-calibrate

print("Self-Calibrating phases and amplitudes...")

caltab = eh.selfcal(obs_static, imgr.out_last(), ttype=ttype,

method='both',

gain_tol=gain_tol, caltable=True)

obs_sc = caltab.applycal(obs_static, interp='nearest', extrapolate=True)
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Finally, the script saves out the final image as a .fits file and produces a final self-calibrated data

set that it saves to the .uvfits format. After generating these final outputs, the script produces and

saves a .pdf file image-data consistency sheet (described in Section 6.6.2) that summarizes the final

image, the final self-calibration gain solution, and the consistency of the self-calibrated data to the

image.

###############################################

# Save the results and produce a summary sheet

###############################################

# Final image

im_out = imgr.out_last().copy()

im_out.save_fits(outfile + '.fits')

# Final self-cal data

obs_sc_out = eh.selfcal(obs_sc, im_out, ttype=ttype, method='both')

obs_sc_out.save_uvfits(outfile + '.uvfits')

# Image-data summary sheet

eh.imgsum(im_out, obs_sc_out, obs_static, outfile+'_imgsum.pdf', cp_uv_min=zero_uv_max)
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