Black Hole Images with the EHT: Features, Uncertainties, Interpretation

Andrew Chael
Princeton Gravity Initiative

Black Hole Mimickers: From Theory to Observation March 3, 2024

What does a jet launching black hole look like on event horizon scales?

The Black Hole Shadow

Shadow sizes on the sky:

Sgr A*: 50 μ as \rightarrow 1.4 x 10⁻⁸ degrees

M87*: 40 μ as \rightarrow 1.1 x 10⁻⁸ degrees

The Event Horizon Telescope

Resolution
$$\approx \frac{\lambda}{d_{\rm Earth}} \approx \frac{1.3 \,\mathrm{mm}}{1.3 \times 10^{10} \,\mathrm{mm}} \approx 20 \,\mu\mathrm{as}$$

Outline

- 1. How does the EHT image black holes?
- 2. What are the main features of (polarized) black hole images?
- 3. What is our astrophysical interpretation of EHT images?
- 4. Some (biased) implications and future directions

How do we obtain black hole images with the EHT?

EHT: Array

EHT: People

300+ members

60 institutes

20 countries from Europe, Asia, Africa, North and South America.

Primary EHT Papers

- First M87 EHT Results I-VI (ApJL 2019)
 - First image of a black hole and its interpretation

Very Long Baseline Interferometry (VLBI)

Every projected baseline between two telescopes provides one Fourier component of the image

Very Long Baseline Interferometry (VLBI)

EHT coverage is sparse: inversion of image from the data is highly unconstrained

EHT Data Suggests Ring Structure

Challenges of near-horizon imaging

Data at each station are corrupted by unknown gain and leakage systematics

Solving for the Image

Several different types of reconstruction algorithms:

- **CLEAN-based**: standard and efficient, but can have difficulties on very sparse data LPCAL/GPCAL (Park+ 2021) and polsolve (Marti-Vidal+ 21)
- Regularized Maximum Likelihood w/ Gradient Descent: fast and flexible, but lots of hyperparameters eht-imaging (Chael+ 2016, 2018, 2023), SMILI (Akiyama+ 2017)
- Bayesian MCMC posterior exploration: fully characterizes uncertainty, but expensive
 - Themis (Broderick+ 21), DMC (Pesce+ 21), Comrade (Tiede+ 2022)

Solving for the Image

Geometric models: solve for shapes

We compare results extensively across methods to ensure reliability and avoid overfitting

The eht-imaging software library

- python toolkit for analyzing, simulating, and imaging interferometric data
- A flexible framework for developing new tools:
 - dynamical imaging (Johnson+ 2017)
 - multi-frequency imaging (Chael+ 2023a)
 - geometric modeling (Roelofs+ 2023)
- Uses:
 - All EHT results to date
 - Next-generation EHT design
 - Imaging & analysis from VLBA, GMVA, ALMA, RadioAstron...

pip install ehtim Chael+ 2016, 2018a, 2023a

Testing our methods with synthetic data

Six different polarized source models

Cross-comparison across methods

- All methods show similar total intensity and polarization structure at 20 µas resolution
- Consistent ring diameter (~40 µas) and asymmetry (south)
- Polarization structure is predominantly helical and weak, (|m| ~15 %)

M87: Image persistance across years

- 2018 observations show consistent horizon-scale structure in M87* 1000 gravitational timescales later.
- Observations performed with a more complete array (including Greenland Telescope)
- Image diameter is consistent but brightness position angle shifts
- Stay tuned for more soon....

Sgr A*

- Imaging Sgr A* is more challenging than M87 due to rapid sub-hour variability and interstellar scattering.
- Sgr A* images predominantly (but not uniquely) show a ≈50µas diameter ring.
- Sgr A* images do not currently constrain the ring position angle
- Sgr A* is more polarized (≈30%)
 than M87*, and it shows a similar
 helical linear polarization pattern.

Summarizing an image: Total Intensity

Total Intensity Image Metrics

- Ring diameter d
- Ring width w
- Ring asymmetry A
- Ring position angle η
- Relative central brightness f_c
- For M87*:
 - Diameter and PA are best measured
- For Sgr A*:
 - Diameter and width are best measured.

summary statistics defined in EHT papers represent quantities we confidence in measuring provide a **natural point of comparison for new theoretical models** to existing data

M87 Ring Properties (2017)

- Diameter $d \approx 41 \, \mu \mathrm{as}$ is consistent across time and method
- The width is resolution dependent, and is at best an upper limit.
- Orientation angle shows tentative $\approx 20^{\circ}$ CCW shift from April 5 11, 2017

M87* Ring Properties (2017-2018)

- M87* Ring diameter is consistent from year-to $d = 42 \pm 3 \,\mu \mathrm{as}$
- M87* ring width is resolutiondependent: w/d < 0.5
- M87* ring position angle shows a 30 degree shift counterclockwise from 2017 to 2018.

Sgr A* EHT image metrics

• Sgr A* ring diameter is well measured and consistent with 4.3x10⁶ solar mass black hole at the Galactic Center:

$$d = 51.8 \pm 2.3 \,\mu{\rm as}$$

- Sgr A* ring width is better resolved and consistently recovered across methods: w/d = 0.3 0.5
- Sgr A* ring asymmetry is not consistently recovered.

Sgr A*

April 7, 2017

Summarizing an image: Polarization

Unresolved and Resolved polarization fractions

$$|m|_{\text{net}} = \frac{\sqrt{\left(\sum_{i} Q_{i}\right)^{2} + \left(\sum_{i} U_{i}\right)^{2}}}{\sum_{i} I_{i}} \quad \langle |m| \rangle = \frac{\sum_{i} \sqrt{Q_{i}^{2} + U_{i}^{2}}}{\sum_{i} I_{i}}$$

Azimuthal structure

2nd Fourier mode

$$\beta_2 = \frac{1}{I_{\text{ring}}} \int_{\rho_{\text{min}}}^{\rho_{\text{max}}} \int_{0}^{2\pi} P(\rho, \varphi) e^{-2i\varphi} \rho d\varphi d\rho$$

Simulation images can be **strongly** or **weakly** polarized: with **patterns** that are radial/toroidal/helical

Circular polarization is marginally detected (EHTC 2023,2024) and may be constraining in the future!

Summarizing an image: comparing methods

Sgr A* is more polarized than M87*: $\langle |m| \rangle = 26 \pm 2\%$ vs $\langle |m| \rangle = 8 \pm 3\%$ Both Sgr A* and M87 have the same sign of arg(β_2) after Faraday de-rotation

EHT Multi-wavelength partners

Image credits: NSF/VERITAS, Juan Cortina, Vikas Chander, NASA, NASA/JPL-Caltech, NASA/CXC/SAO, NASA, ESO, P. Kranzler & A. Phelps, NRAO/AUI/NSF, HyeRyung, NAOJ, MPIfR/N. Tacker. Slide credit: Sara Issaoun

M87 simultaneous SED

EHTC MWL WG 2021 compiled comprehensive, simultaneous SED

- Multiple emission zones are necessary to explain the SED
- Unclear where highenergy emission originates

Sgr A* EHT model comparison considers 86 GHz luminosity & source size, NIR and X-ray luminosity

What do EHT images tell us about the black hole environment?

Modes of Black Hole Accretion

Bright Active Galactic Nuclei (AGN): Most Liberated Energy is **Radiated**

- Thin Disks
- High Luminosity & Near-Eddington Accretion Rate
- Optically Thick & Bright

Low-Luminosity AGN (LLAGN): Most Liberated Energy is **Advected**

- Thick Disks
- Low accretion rate/Luminosity
- Optically Thin & Dim
- Hot: $T \gtrsim 10^{10} \,\mathrm{K}$
- Plasma is collisionless/not in equilibrium

Theoretical Tools for Interpreting Black Hole Images

General Relativistic Magnetohydrodynamic (GRMHD) Simulations

Solves coupled equations of plasma dynamics and magnetic field for low-luminosity accretion in Kerr spacetime

GR Radiative Transfer

Tracks light rays and solves for the polarized radiation (including Faraday effects)

GRMHD Simulation library

native resolution

Images modeled with the ipole GRRT code (Moscibrodzka & Gammie 2018) **Two-temperature plasma model** from Moscibrodzka et al. 2016

EHT resolution

$$T_{
m e}
eq T_{
m i}
eq T_{
m gas}$$

EHT Images are Immediately Consistent with LLAGN Picture

Scoring M87* GRMHD Simulations: before polarization

 Most simulation models can be made to fit total intensity observations alone by tweaking free parameters (mass, PA, total flux density)

- An additional constraint on **jet power** (≥ 10⁴² erg/sec) rejects all spin 0 models
- Can we do better with polarization?

Ring Asymmetry and Black Hole Spin

The **BH angular momentum**, not the **disk angular momentum** determines the image orientation in models with nonzero spin (see Wong+ 21)

BH spin-away (clockwise rotation) models are strongly favored for M87

Why polarization?

- Synchrotron radiation is emitted with polarization perpendicular to magnetic field lines
- Polarization transport is sensitive to the magnetic field, plasma, and spacetime
- Polarization images highly constrain near-horizon astrophysics

What is the magnetic field structure close to the horizon?

Two accretion states that depend on the accumulated magnetic flux on horizon

Note: 'strong' fields mean ~10 G at the horizon for M87*

Blandford-Znajek (1977):
$$P_{
m jet} \propto \Phi_B^2 a^2$$
 BH spin magnetic flux

Scoring M87 simulations with linear polarization

Unresolved and **resolved** linear polarization fractions

Azimuthal structure 2nd Fourier mode

Scoring M87* simulations with polarization

- Scoring with multiple approaches all strongly favor a magnetically arrested accretion flow
- We constrain M87*'s allowed accretion rate by 2 orders of magnitude:

$$\dot{M} \simeq (3 - 20) \times 10^{-4} M_{\odot} \text{ yr}^{-1}$$

 $(\dot{M}_{\rm Edd} = 137 M_{\odot} \text{ yr}^{-1})$

 Parameters from passing models agree with one-zone estimates:

$$T_e \simeq (5 - 40) \times 10^{10} \text{ K}$$

 $|B| \simeq (7 - 30) \text{ G}$
 $n \sim 10^{4-5} \text{ cm}^{-3}$

 Strong magnetic fields more easily launch Blandford-Znajek jets!

Sgr A* non-polarization Constraints

- Sgr A* models are strongly constrained by the precise mass measurement, strong multiwavelength constraints, and resolved ring width.
- Most passing models are MAD
- Passing models have **low inclination**: i ≤ 30 deg

The Sgr A* "Variability Crisis"

- Sgr A* has a **short gravitational timescale** (~20 sec) and is one of the most observed objects in the sky across the EM spectrum over the last few decades.
- Sgr A* simulations are nearly all too variable when compared with long-duration light curves.
- How big of a problem is this? Opinions differ!
- Possible resolutions: extended emission, better two-temperature modeling (e.g. Chan+ 2024) radiative cooling (e.g. Salas+2024)

Sgr A* Polarization Constraints

- For any model to pass requires **Faraday de-rotation**.
- Passing models all must spin **clockwise**, consistent with NIR & submm flare inferences (GRAVITY+ 2018, Wielgus+ 2022)
- One high spin MAD model survives both multi-wavelength and polarization cuts

Sgr A*and M87*: Tests of GR

- Connecting EHT image ring diameter to predicted shadow size from GR requires astrophysical calibration
- Uncertainty in diameter measurement, mass, and astrophysical source model included in distribution of the deviation parameter δ
- Both M87* and Sgr A* have image sizes consistent with GR prediction.
- See talk by Lia soon!

Some Next Steps and (biased) Implications

EHT upgrades

Increased (u,v) filling from new sites and observing frequencies in ngEHT will enhance dynamic range

2017: Observations at 6 distinct sites

2021: Observations at 9 sites (+ Kitt Peak & NOEMA)

2025: 230 and 345 GHz observations in full array

2030+: tri-band observations at ~14 sites?

$$N_{\rm obs} = {N_{\rm sites} \choose 2} \propto N_{\rm sites}^2$$

The Black Hole Explorer (BHEX)

BHEX will achieve the highest angular resolution in history and reveal a black hole's "photon ring" for the first time

- First direct measurement of a black hole's spin
- Opportunity to study *dozens* of black holes
- Leverages existing ground infrastructure
- Targeting a 2025 SMEX proposal
- See Wednesday talk by Alex Lupsasca!

Science Goals

- Discover a black hole's photon ring
- Make direct measurements of a black hole's mass and spin
- Reveal the shadows of dozens of supermassive black holes

The "Inner shadow" is a generic prediction of MAD simulations

- The inner shadow is visible in simulations; its edge approaches the lensed position of the event horizon
- MADs have thin / nearly equatorial emission regions close to the horizon
- Redshift increases near the horizon \rightarrow the inner shadow is most visible at high dynamic range

Inner shadow images provide another probe of spacetime

Toy example of determining mass and spin with inner shadow (blue) and photon ring (red) radius measurements for **M87***

(bands represent measurement uncertainties of 0.1, 0.5, 1 uas)

With **two** curves in the image (the inner shadow and photon ring), we can measure **relative sizes** (and positions), removing degenercies in estimating mass & spin

Polarized Images and horizon-scale energy flow

- The polarization spiral's 2^{nd} Fourier mode (β_2 : Palumbo+ 2020) is the **most constraining** feature for GRMHD simulation scoring
- Can we interpret β_2 physically?

Polarized Images and horizon-scale energy flow

Radial Poynting Flux:

$$\mathcal{J}_{\mathcal{E}}^r = -T_{t \; \mathrm{EM}}^r = -B^r B^\phi \, \Omega_F \; \Delta \sin^2 \theta \, \mathrm{fieldline \; angular \; speed}$$

Polarized images are spin dependent

- Black hole spin winds up initially radial fields, but always so that $B^{\phi}/B^{r} < 0$
- The field pitch angle increases with spin
- Increased field winding
 - increases the Poynting flux (BZ jet power)
 - makes the observed polarization pattern more radial

To look for energy extraction, we need to zoom out

- New sites & larger bandwidth will enhance EHT's dynamic range and illuminate the BH-jet connection
- Measuring polarization as a function of radius probes energy flow at different scales
- Polarization of BZ jets has a strong signature of spin at the light cylinder (Gelles, Chael, & Quataert 2025)

To look for energy extraction, we need to zoom in

- \cdot arg(β_2) evolves rapidly close to the horizon from both **field wind-up** and **parallel transport**
 - strong evolution of $arg(\beta_2)$ to the horizon is predicted by both analytic models and GRMHD
- BHEX + EHT can obtain the dynamic range and resolution to observe this evolution?
 - Can we trace energy-extracting field lines to <0.5r_g to the horizon?

Takeaways...

- 1. Sgr A* and M87* are regularly studied on the horizon scale in exquisite detail by the Event Horizon Telescope
- **2. EHT uses multiple analysis approaches** and summary statistics to focus on the most-well constrained image features
- **3. Polarization** is the key for constraining near-horizon astrophysics, and indicates that accretion in both Sgr A* and M87* is likely magnetically arrested
- **4. We are just getting started** in what we can learn from black hole images

...and more questions

- Can we measure black hole energy extraction in M87*?
- What plasma physics sets the temperature/distribution of the electrons?
- What powers flares in Sgr A* and M87*?
- What can EHT/BHEX observation tell us about the near-horizon environments of supermassive black holes beyond Sgr A* and M87*?

