Insights from Polarized Black Hole Images

Andrew Chael
Princeton Gravity Initiative

June 12, 2025

Supermassive black holes and jets are everywhere

What does jet launching look like on event horizon scales?

The Event Horizon Telescope

Resolution
$$\approx \frac{\lambda}{d_{\rm Earth}} \approx \frac{1.3 \, \rm mm}{1.3 \times 10^{10} \, \rm mm} \approx 20 \, \mu \rm as$$

Can polarized EHT images tell us how jets are launched?

Why polarization?

Synchrotron radiation is emitted with polarization perpendicular to magnetic field lines

Why polarization?

- Synchrotron radiation is emitted with polarization perpendicular to magnetic field lines
- Polarization transport is sensitive to the magnetic field, plasma, and spacetime
- Polarization images highly constrain near-horizon astrophysics

This talk:

1. What did we learn from comparing first polarized images of black holes to simulations?

2. What can polarized EHT images tell us about jet launching?

3. What's next?

What did we learn from comparing polarized images of M87* to simulations?

EHTC VIII, 2021; EHTC IX, 2023 (**Chael**, paper coordinator) 2105.01173, 2311.10976

Theoretical Tools for Interpreting Black Hole Images

General Relativistic Magnetohydrodynamic (GRMHD) Simulations

Solve coupled equations of plasma dynamics and magnetic field for low-luminosity accretion in Kerr spacetime

GR Radiative Transfer

Track light rays and solves for the polarized radiation (including Faraday effects)

GRMHD Simulation library

native resolution

Images modeled with the ipole GRRT code (Moscibrodzka & Gammie 2018) **Two-temperature plasma model** from Moscibrodzka et al. 2016

EHT resolution

$$T_{
m e}
eq T_{
m i}
eq T_{
m gas}$$

What is the magnetic field structure close to the horizon?

Two accretion states that depend on the accumulated magnetic flux on horizon

Note: 'strong' fields mean ~10 G at the horizon for M87*

Blandford-Znajek (1977):
$$P_{
m jet} \propto \Phi_B^2 a^2$$
 BH spin magnetic flux

EHT Images are consistent with GRMHD/LLAGN Picture

Scoring M87* GRMHD Simulations: before polarization

 Most simulation models can be made to fit total intensity observations alone by tweaking free parameters (mass, PA, total flux density)

- Image asymmetry → black hole spin vector faces away from Earth
- An additional constraint on **jet power** (≥ 10⁴² erg/sec) rejects all spin 0 models
- Can we do better with polarization?

Summarizing an image: Polarization

Unresolved and Resolved polarization fractions

$$|m|_{\text{net}} = \frac{\sqrt{\left(\sum_{i} Q_{i}\right)^{2} + \left(\sum_{i} U_{i}\right)^{2}}}{\sum_{i} I_{i}} \quad \langle |m| \rangle = \frac{\sum_{i} \sqrt{Q_{i}^{2} + U_{i}^{2}}}{\sum_{i} I_{i}}$$

Azimuthal structure

2nd Fourier mode

$$\beta_2 = \frac{1}{I_{\text{ring}}} \int_{\rho_{\text{min}}}^{\rho_{\text{max}}} \int_{0}^{2\pi} P(\rho, \varphi) e^{-2i\varphi} \rho d\varphi d\rho$$

Simulation images can be **strongly** or **weakly** polarized: with **patterns** that are radial/toroidal/helical

Scoring M87* simulations with polarization

- Scoring with multiple approaches all strongly favor a magnetically arrested accretion flow
- We constrain M87*'s allowed accretion rate by 2 orders of magnitude:

$$\dot{M} \simeq (3 - 20) \times 10^{-4} M_{\odot} \text{ yr}^{-1}$$

 $(\dot{M}_{\rm Edd} = 137 M_{\odot} \text{ yr}^{-1})$

 Parameters from passing models agree with analytic model estimates:

$$T_e \simeq (5 - 40) \times 10^{10} \text{ K}$$

 $|B| \simeq (7 - 30) \text{ G}$
 $n \sim 10^{4-5} \text{ cm}^{-3}$

 Strong magnetic fields more easily launch Blandford-Znajek jets!

Horizon-Scale circular polarization is unambiguously detected by the EHT

- We detect an offset between robust closure phases in the RR and LL polarizations in both M87* and Sgr A*.
- Clear evidence of modest circular polarization in black hole images.
- Limited sensitivity and systematic gain uncertainty means we cannot currently constrain the image structure in circular polarization.

Passing simulations have diverse circular polarization images

Detecting the Stokes V image structure with more sensitive observations will constrain models further.

Need more theoretical work to understand these morphologies!

Aside: Sgr A* in linear polarization

- Polarization fraction is higher than M87
- β_2 is consistent with **clockwise rotation** measured in NIR flares
- MAD simulations also preferred where is the jet?

What can a polarized image of M87* tell us about energy flow & jet launching?

Chael+ 2023, Chael 2025 2307.06372, 2501.12448

Jets are thought to be powered by black hole spin energy extracted via magnetic fields (Blandford & Znajek 1977) Is it possible to observe black hole energy extraction **on horizon scales**?

M87 Jets in GRMHD Simulations

 Jets from magnetically arrested GRMHD simulations are powered by black hole spin

> (e.g. McKinney & Gammie 2004, Tchekhovskoy+ 2012, EHTC+ 2019, Narayan+ 2022)

- Radiative simulations (Chael+ 2019, 2025) naturally produce:
 - A jet power in measured range
 - observed wide opening angle
 - observed core-shift
- Can we be sure? What is a
 physically meaningful
 observation of horizon-scale
 energy flow from a black hole?

Jets in MADs are Blandford-Znajek

Jet power follows BZ prediction in 8 very-long-duration simulations $(10^5 t_g)$ of magnetically arrested accretion

R. Narayan, **A. Chael +** 2021 Tchekhovskoy+ 2012, Lowell+ 2023, Guo+ 2025...

Polarized Images of M87* and horizon-scale energy flow

- The polarization spiral's 2^{nd} Fourier mode (β_2 : Palumbo+ 2020) is the **most constraining** image feature
- Can we interpret β_2 physically?

Cartoon model: β_2 is connected to the field pitch angle

- Face on fields, no Faraday rotation, no optical depth, no relativistic parallel transport or abberation
- Coordinate axis points into the sky (EHT Paper V, 2019)

BZ model: β_2 is connected to the electromagnetic energy flux

Radial Poynting flux in Boyer-Lindquist coordinates:

$$\mathcal{J}^r_{\mathcal{E}} = -T^r_{t \; \mathrm{EM}} = -B^r B^\phi \, \Omega_F \; \Delta \sin^2 \theta \, \mathrm{Sin}^2 \, \theta \, \mathrm{$$

Near-horizon polarization is connected to the electromagnetic energy flux

- In simple BZ models, the sign of $\arg(\beta_2)$ is directly connected to the direction of Poynting flux, assuming we know the sign of Ω
- Ignoring Faraday effects, the EHT's measurement of β_2 implies electromagnetic energy outflow in M87*
- Does this simple argument hold up in more complicated models of M87*?

β_2 in semi-analytic models of M87*

- We fix magnetic fields to the force-free BZ monopole solution (with energy outflow)
- We explore many models for the velocity of the emitting fluid
- Changes in fluid velocity do not significantly affect sign of $\arg(\beta_2)$ or trend with BH spin

β_2 in MAD **GRMHD simulations** of M87*

- 1600 simulated EHT-resolution M87* images from MAD simulations (Narayan+ 2022)
- Almost all 230 GHz simulation images have **negative** $arg(\beta_2)$ consistent with the measured energy outflow in the simulations
- $arg(\beta_2)$ has the **same qualitative dependence on spin** as in the BZ monopole model, despite effects of turbulence, non-equatorial emission, and Faraday rotation.

In GRMHD, energy-extracting fieldlines set $arg(\beta_2)$

Even in **retrograde** simulations, field-lines in the 230 GHz emission region **co-rotate** with the black hole and have a negative B^{φ} / B^{r}

Field-line angular speed

Chael+ 2023

Polarized images are spin dependent

- Black hole **spin winds up initially radial fields**, but always so that $B^{\phi}/B^{r} < 0$
- The field pitch angle increases with spin
- Increased field winding
 - increases the Poynting flux (BZ jet power)

Polarized images are spin dependent

- Black hole spin winds up initially radial fields, but always so that $B^{\phi}/B^{r} < 0$
- The field pitch angle increases with spin
- Increased field winding
 - increases the Poynting flux (BZ jet power)
 - makes the observed polarization pattern more radial

What about Faraday Rotation?

- Significant Faraday rotation on small scales
 - → Rotates the overall polarization pattern at EHT resolution
 - → **Scrambles** polarization vectors on small scales

What about Faraday Rotation?

With Faraday

Without Faraday

Significant Faraday rotation on small scales

EHT resolution

- → **Rotates** the overall polarization pattern at EHT resolution
- → **Scrambles** polarization vectors on small scales
- → **Depolarizes** the image when blurred to EHT resolution
- Internal Faraday rotation from colder electrons is necessary to depolarize MAD models

Credit: EHT 2021 Paper VIII (Chael, paper coordinator)

Aside: Radiative Simulations Have Similar Jets...

• M87* and Sgr A* have two-temperature plasmas

$$T_{\rm e} \neq T_{\rm i}$$

- Radiative, two-temperature GRMHD includes heating and cooling self-consistently (e.g. Ressler+2015,17, Chael+ 2018,19)
- M87* has a radiative efficiency of ~10% (EHTC+ 2021, Chael+ 2025), but radiative feedback does not significantly change global jet/disk properties or $arg(\beta_2)$

...but electrons are too hot!

- EHT analysis fixes $T_{\rm e}$ locally in **postprocessing** and seems to prefer **cold electrons** (${\rm T_i} \sim 100 {\rm x} \, {\rm T_e}$) to sufficiently depolarize the image
- Radiative, two-temperature GRMHD includes heating and cooling self-consistently but prefer more modest temperature ratios (Chael 2025)
- Is there a plasma heating prescription that will produce cold electrons? Or is this a hint that we need to modify our global picture?

Next steps for determining the jet power source

Gelles+ 2025, Chael+ in prep.

2410.00954

How can we determine the jet power source?

By zooming **out**..

Image the connection between the BH and the low-brightness extended jet in high dynamic range with the next-generation EHT (ngEHT)

By zooming in..

Image field lines close to the event horizon in **high resolution** with the **Black Hole Explorer (BHEX)**

The next-generation EHT (ngEHT)

Increased coverage from new sites and observing frequencies in ngEHT will enhance dynamic range

2017: Observations at 6 distinct sites

2018: Observations at 7 sites (+ GLT)

2024-25: 230+345 GHz observations

2030s: tri-band observations at 14 sites

2021-22: Observations at 9 sites (+ Kitt Peak & NOEMA)
$$N_{
m obs}=egin{pmatrix}N_{
m sites}\\2\end{pmatrix}\propto N_{
m sites}^2$$
 2024-25: 230+345 GHz observations

To look for energy extraction, we need to zoom out

- New sites & larger bandwidth will enhance EHT's dynamic range and illuminate the BH-jet connection
- Measuring polarization as a function of radius probes energy flow at different scales
- Polarization of BZ jets has a strong signature of spin at the light cylinder (Gelles, Chael, & Quataert 2025)

The Black Hole Explorer (BHEX)

Earth-Space VLBI at 1.3 mm

- 3.5 m dish in 20,000 km orbit
- Simultaneous dual-band observations (80 + 240 GHz)
- Leverages existing ground infrastructure & pioneers optical laser downlink
- Targeting a 2025 SMEX proposal

BHEX Science Goals

- Discover a black hole's photon ring
- Make direct measurements of a black hole's mass and spin
- Reveal the shadows of dozens of supermassive black holes

To look for energy extraction, we need to zoom in

- $oldsymbol{\beta}_2$ evolves rapidly close to the horizon from both **field wind-up** and **parallel transport**
 - Strong evolution of $arg(\beta_2)$ to the horizon is predicted by both simple BZ models and GRMHD
- BHEX + EHT obtain the resolution to observe energy extraction at horizon scales

The future of near-horizon black hole astrophysics

- Expand all EHT sites to multi-frequency observing and add
 4-5 new stations (Doeleman+ 2023)
- Image black holes and AGN jets in high dynamic range
- Probe black hole jet launching from horizon to hundreds of Schwarzschild radii (Gelles+ 2025: 2410.00954)

Black Hole Explorer (BHEX)

- NASA SMEX proposal for a mmVLBI telescope in mid-earth orbit (Johnson+ 2024).
- Image black holes and other sources in **high resolution**
- Image extreme gravitational lensing and measure BH spin by resolving the **photon ring** (Lupsasca+ 2024).
- Expand number of horizon-scale sources from 2 to ~12 (Zhang+ 2024)

Takeaways...

- 1. Polarization is the key for constraining near-horizon astrophysics
- 2. EHT polarization images are consistent with **magnetically arrested accretion** and **outward electromagnetic energy flux**
- **3. Future ground and space-based observations** will directly probe the black hole-jet connection

...and more questions

- What plasma physics sets the temperature/distribution of the electrons?
- What powers flares in Sgr A* and M87*?
- What can EHT/BHEX observation tell us about near-horizon physics in supermassive black holes beyond Sgr A* and M87*?

backup slides

How can we better simulate the black hole-jet connection?

Chael 2024, Chael 2025 2404.01471, 2501.12448

Difficulties with GRMHD Simulations at high magnetization

 GRMHD codes conserve the total stress energy tensor, composed of matter and electromagnetic parts:

$$\nabla_{\mu} \left(T_{\text{MAT}}^{\mu \nu} + T_{\text{EM}}^{\mu \nu} \right) = 0$$

 The ratio of magnetic energy to rest-mass energy is defined:

$$\sigma = b^2/\rho$$

- In the limit $\sigma\gg 1$, numerical codes struggle to recover fluid variables and the simulation can crash
- GRMHD codes introduce density 'floors' for stability

$$\sigma < \sigma_{\rm max}$$

Choosing "σ cut" is a major uncertainty in simulated images

A New Hybrid GRMHD + Force-Free Code

Below $\,\sigma < \sigma_{\mathrm{trans}}$, use GRMHD as normal

Above $\sigma > \sigma_{\rm trans}$, use a decoupled force-free scheme:

- electromagnetic fields evolve with no backreaction
- field-parallel velocity determined from GRMHD limit
- gas evolved adiabatically in fixed background

Can transition between the schemes in `intermediate' σ regions

30

40

50

20

10

Comparing standard GRMHD and Hybrid GRMHD+FF

We achieve stable evolution up to $\sigma=10^6$ in the force-free jet region close to the black hole

230 GHz Image comparison

In standard GRMHD, foreground jet emission fills in the shadow region unless we have a cut on σ in radiative transfer

Hybrid simulation images look the same with and without a σ cut

GRMHD simulations can explain M87's Rotation Measure

Important in future work to use simultaneous observations on larger scales to better constrain contributions of internal and any external Faraday rotation.

GRMHD simulations naturally produce low circular polarization

$$v_{
m net} = rac{\int \mathcal{V} \, dA}{\int \mathcal{I} \, dA}.$$

$$\langle |v|
angle = rac{\int |\mathcal{V}/\mathcal{I}|\, \mathcal{I}\, dA}{\int \mathcal{I}\, dA},$$

Higher frequencies

- Future EHT campaigns will observe at 345 GHz
- If our picture is right, we should see weaker Faraday rotation and stronger polarization
- With observations at multiple frequencies, we can directly map Faraday rotation and further constrain our models

BHEX Science Area 1: Detect Black Hole Photon Rings and Directly Measure BH Spin

- BHEX will detect and image the photon rings formed by light deflected >180 degrees in Sgr A* and M87*
- BHEX will measure the size and asymmetry of the photon rings in Sgr A* and M87* to ~1% accuracy
- BHEX will use these measurements to infer Sgr
 A* and M87*s mass and spin directly from strong gravity
- BHEX will compare spin measured from the photon ring to spin inferred from near-horizon magnetic fields (Palumbo+ 2020, Chael+ 2024)

Direct Light

BHEX Science Area 2: Survey Low-Luminosity AGN with Horizon-scale Resolution

- BHEX will increase the sample size of resolved black hole horizons from 2 to >10
- BHEX will make >10 horizon-scale measurements of mass (from the size of the emission region) and spin (from magnetic field helicity)
- BHEX will observe how horizon-scale accretion changes with mass, spin, accretion rate, radioloudness, and host galaxy properties
- BHEX will probe nearby AGN with sufficient angular resolution to detect SMBH binaries at sub-pc separations

Event Horizon Targets

LAGN properties

Figures: Zhang, Ricarte et al 2024

BHEX Science Area 3: Resolving Extragalactic Jet Launching and Collimation

- BHEX will resolve longitudinal and transverse structure in jets from scales of 10-10,000 GM/c²
- BHEX will determine if BH jets are universally edge brightened and probe their magnetic fields, structure, and composition on sub-pc scales
- BHEX will investigate magnetic fields at the jet light cylinder (10-500 GM/c²), which may encode BH spin (Gelles, Chael & Quataert 2024)
- BHEX will make rapid follow-up images of jets associated with high-energy neutrinos

