Black Hole Jet Launching Up Close

Andrew Chael

Princeton Gravity Initiative

ASIAA March 27, 2025

Supermassive black holes and jets are everywhere

What does jet launching look like on event horizon scales?

The Event Horizon Telescope

Resolution
$$\approx \frac{\lambda}{d_{\rm Earth}} \approx \frac{1.3\,\mathrm{mm}}{1.3 \times 10^{10}\,\mathrm{mm}} \approx 20\,\mu\mathrm{as}$$

Can polarized EHT images tell us how jets are launched?

Why polarization?

Synchrotron radiation is emitted with polarization perpendicular to magnetic field lines

Why polarization?

- Synchrotron radiation is emitted with polarization perpendicular to magnetic field lines
- Polarization transport is sensitive to the magnetic field, plasma, and spacetime
- Polarization images highly constrain near-horizon astrophysics

This talk:

- 1. How do we make *polarized* images of black holes with the EHT?
- 2. What did we learn from the first polarized image of M87*?
- 3. How can we better simulate the black hole-jet connection?
- 4. What can polarized EHT images tell us about jet launching?

My Research

Simulations

Using complex physics+ computers to predict nearhorizon images

Photon Ring

Imaging

Using data to map nearhorizon emission in space, time, polarization, and energy

Analytic Models

Understanding key features of BH images and data with simplified physics

How did we obtain the first polarized image of a black hole?

EHTC VII, 2021; EHTC IX, 2023 (**Chael**, paper coordinator) 2105.01169, 2311.10976

EHT: Array

Photo Credits: EHTC I, 2024 ALMA, Sven Dornbusch, Junhan Kim, Helge Rottmann, David Sanchez, Daniel Michalik, Jonathan Weintroub, William Montgomerie, Tom Folkers, ESO, IRAM, Nimesh Patel

EHT: People

300+ members

60 institutes

20 countries from Europe, Asia, Africa, North and South America.

Very Long Baseline Interferometry (VLBI)

Every projected baseline between two telescopes provides one Fourier component of the image

Very Long Baseline Interferometry (VLBI)

EHT coverage is sparse: inversion of image from the data is highly unconstrained

Challenges of near-horizon imaging

Data at each station are corrupted by unknown gain and leakage systematics

Solving for the Image

Several different types of reconstruction algorithms:

- **CLEAN-based**: standard and efficient, but can have difficulties on very sparse data LPCAL/GPCAL (Park+ 2021) and polsolve (Marti-Vidal+ 21)
- Regularized Maximum Likelihood w/ Gradient Descent: fast and flexible, but lots of hyperparameters eht-imaging (Chael+ 2016, 2018, 2023), SMILI (Akiyama+ 2017)
- Bayesian MCMC posterior exploration: fully characterizes uncertainty, but expensive
 - Themis (Broderick+ 21), DMC (Pesce+ 21), Comrade (Tiede+ 2022)

The eht-imaging software library

- python toolkit for analyzing, simulating, and imaging interferometric data
- A flexible framework for developing new tools:
 - dynamical imaging (Johnson+ 2017)
 - multi-frequency imaging (Chael+ 2023a)
 - geometric modeling (Roelofs+ 2023)
- Uses:
 - All EHT results to date
 - Next-generation EHT design
 - Imaging & analysis from VLBA, GMVA, ALMA, RadioAstron...

https://github.com/achael/eht-imaging

pip install ehtim Chael+ 2016, 2018a, 2023a

New EHT imaging techniques have wide applicability!

3C279 with RadioAstron

- At 22 GHz (1.3 cm) observed in 2014
- Space baselines to RadioAstron supported by a ground array of 23 antennas
- Reconstruction with eht-imaging.

200 µas

0.7

Polarized Images of M87 from 5 methods

- All methods show similar total intensity and polarization structure at 20 µas resolution
- Consistent ring diameter (~40 µas) and asymmetry (south)
- Polarization structure is predominantly helical and weak, (|m| ~15 %)

Horizon-Scale circular polarization *images* are **not** robustly recovered

- EHT unambiguously detects circular polarization in M87*
- Different methods do not show consistent circular polarization images
 - between days
 - between frequency bands
- We place an upper limit: $\langle |v| \rangle < 3.7\%$
- Future observations will be more sensitive!

M87: Image persistance across years

- 2018 observations show consistent horizon-scale structure in M87* 1000 gravitational timescales later.
- Observations performed with a more complete array (including Greenland Telescope)
- Image diameter is consistent but brightness position angle shifts
- Stay tuned for more soon....

What did we learn from comparing polarized images of M87* to simulations?

EHTC VIII, 2021; EHTC IX, 2023 (**Chael**, paper coordinator) 2105.01173, 2311.10976

Theoretical Tools for Interpreting Black Hole Images

General Relativistic Magnetohydrodynamic (GRMHD) Simulations

Solve coupled equations of plasma dynamics and magnetic field for low-luminosity accretion in Kerr spacetime

GR Radiative Transfer

Track light rays and solves for the polarized radiation (including Faraday effects)

GRMHD Simulation library

native resolution

Images modeled with the ipole GRRT code (Moscibrodzka & Gammie 2018) **Two-temperature plasma model** from Moscibrodzka et al. 2016

EHT resolution

$$T_{
m e}
eq T_{
m i}
eq T_{
m gas}$$

What is the magnetic field structure close to the horizon?

Two accretion states that depend on the accumulated magnetic flux on horizon

Note: 'strong' fields mean ~10 G at the horizon for M87*

Blandford-Znajek (1977):
$$P_{
m jet} \propto \Phi_B^2 a^2$$
 BH spin magnetic flux

EHT Images are consistent with GRMHD/LLAGN Picture

Scoring M87* GRMHD Simulations: before polarization

 Most simulation models can be made to fit total intensity observations alone by tweaking free parameters (mass, PA, total flux density)

- Image asymmetry → black hole spin vector faces away from Earth
- An additional constraint on **jet power** (≥ 10⁴² erg/sec) rejects all spin 0 models
- Can we do better with polarization?

Summarizing an image: Polarization

Unresolved and Resolved polarization fractions

$$|m|_{\text{net}} = \frac{\sqrt{\left(\sum_{i} Q_{i}\right)^{2} + \left(\sum_{i} U_{i}\right)^{2}}}{\sum_{i} I_{i}} \quad \langle |m| \rangle = \frac{\sum_{i} \sqrt{Q_{i}^{2} + U_{i}^{2}}}{\sum_{i} I_{i}}$$

Azimuthal structure

2nd Fourier mode

$$\beta_2 = \frac{1}{I_{\text{ring}}} \int_{\rho_{\text{min}}}^{\rho_{\text{max}}} \int_{0}^{2\pi} P(\rho, \varphi) e^{-2i\varphi} \rho d\varphi d\rho$$

Simulation images can be **strongly** or **weakly** polarized: with **patterns** that are radial/toroidal/helical

Scoring M87* simulations with polarization

- Scoring with multiple approaches all strongly favor a magnetically arrested accretion flow
- We constrain M87*'s allowed accretion rate by 2 orders of magnitude:

$$\dot{M} \simeq (3 - 20) \times 10^{-4} M_{\odot} \text{ yr}^{-1}$$

 $(\dot{M}_{\rm Edd} = 137 M_{\odot} \text{ yr}^{-1})$

 Parameters from passing models agree with analytic model estimates:

$$T_e \simeq (5 - 40) \times 10^{10} \text{ K}$$

 $|B| \simeq (7 - 30) \text{ G}$
 $n \sim 10^{4-5} \text{ cm}^{-3}$

 Strong magnetic fields more easily launch Blandford-Znajek jets!

Faraday Rotation is important!

With rotation

- Significant Faraday rotation on small scales
 - → scrambles polarization directions

Without rotation

Faraday Rotation is important!

0.30 0.25 ... 0.201 0.10 0.10 0.10 0.10 0.00 40 \(\mu \text{as} \)

Without rotation

Significant Faraday rotation on small scales

EHT resolution

- → scrambles polarization directions
- → **Depolarizes** the image when blurred to EHT resolution
- → rotates the pattern when blurred to EHT resolution
- Internal Faraday rotation is necessary to depolarize MAD models

Passing simulations have diverse circular polarization images

Detecting the Stokes V image structure with more sensitive observations will constrain models further.

Need more theoretical work to understand these morphologies!

Aside: Sgr A* in linear polarization

- Polarization fraction is higher than M87
- β_2 is consistent with **clockwise rotation** measured in NIR flares
- MAD simulations also preferred where is the jet?

How can we better simulate the black hole-jet connection?

Chael 2024, Chael 2025 2404.01471, 2501.12448

Difficulties with GRMHD Simulations at high magnetization

 GRMHD codes conserve the total stress energy tensor, composed of matter and electromagnetic parts:

$$\nabla_{\mu} \left(T_{\text{MAT}}^{\mu \nu} + T_{\text{EM}}^{\mu \nu} \right) = 0$$

 The ratio of magnetic energy to rest-mass energy is defined:

$$\sigma = b^2/\rho$$

- In the limit $\sigma\gg 1$, numerical codes struggle to recover fluid variables and the simulation can crash
- GRMHD codes introduce density 'floors' for stability

$$\sigma < \sigma_{\rm max}$$

Choosing "σ cut" is a major uncertainty in simulated images

A New Hybrid GRMHD + Force-Free Code

Below $\,\sigma < \sigma_{\mathrm{trans}}$, use GRMHD as normal

Above $\sigma > \sigma_{\rm trans}$, use a decoupled force-free scheme:

- electromagnetic fields evolve with no backreaction
- field-parallel velocity determined from GRMHD limit
- gas evolved adiabatically in fixed background

Can transition between the schemes in `intermediate'' σ regions

30

40

50

20

10

Comparing standard GRMHD and Hybrid GRMHD+FF

We achieve stable evolution up to $\sigma=10^6$ in the force-free jet region close to the black hole

230 GHz Image comparison

In standard GRMHD, foreground jet emission fills in the shadow region unless we have a cut on σ in radiative transfer

Hybrid simulation images look the same with and without a σ cut

MAD Simulation Uncertainties: Electron Temperature

- Traditional GRMHD simulations assign the electron temperature in post-processing
- Two-temperature simulations can solve directly for the electron temperature, assuming an underlying model of plasma heating

Movie Credits: Aleksander Sądowski,

How do we produce sufficiently cold electrons?

M87* and Sgr A* have two-temperature plasmas

$$T_{\rm e} \neq T_{\rm i}$$

- EHT analysis fixes $T_{\rm e}$ locally in **postprocessing** and seems to prefer electrons $T_i \sim 100 {\rm x} \, T_e$ to sufficiently depolarize the image in MAD simulations.
- Radiative, two-temperature GRMHD includes heating and cooling self-consistently but prefer more modest temperature ratios (Chael 2025)
- Is there a plasma heating prescription that will produce cold electrons? Or is this a hint that we need to modify our global picture?

What can a polarized image of M87* tell us about energy flow & jet launching?

Chael+ 2023, Gelles+ 2025, Chael+ in prep. 2307.06372, 2410.00954

Jets are thought to be powered by black hole spin energy extracted via magnetic fields (Blandford & Znajek 1977) Is it possible to observe black hole energy extraction **on horizon scales**?

M87 Jets in GRMHD Simulations

 Jets from magnetically arrested GRMHD simulations are powered by black hole spin

> (e.g. McKinney & Gammie 2004, Tchekhovskoy+ 2012, EHTC+ 2019, Narayan+ 2022)

- Radiative simulations (Chael+ 2019, 2025) naturally produce:
 - A jet power in measured range
 - observed wide opening angle
 - observed core-shift
- Can we be sure? What is a
 physically meaningful
 observation of horizon-scale
 energy flow from a black hole?

Polarized Images of M87* and horizon-scale energy flow

- The polarization spiral's 2^{nd} Fourier mode (β_2 : Palumbo+ 2020) is the most constraining feature
- Can we interpret β_2 physically?

Cartoon model: β_2 is connected to the field pitch angle

- Face on fields, no Faraday rotation, no optical depth, no relativistic parallel transport/abberation
- Coordinate axis is into the screen/sky (EHT Paper V, 2019)

BZ model: β_2 is connected to the electromagnetic energy flux

Radial Poynting flux in Boyer-Lindquist coordinates:

$$\mathcal{J}^r_{\mathcal{E}} = -T^r_{t \; \mathrm{EM}} = -B^r B^\phi \, \Omega_F \; \Delta \sin^2 \theta \, ,$$
 fieldline angular speed

Near-horizon polarization is connected to the electromagnetic energy flux

- In simple BZ models, the sign of $\arg(\beta_2)$ is directly connected to the direction of Poynting flux, assuming we know the sign of Ω
- Ignoring Faraday effects, the EHT's measurement of β_2 implies electromagnetic energy outflow in M87*
- Does this simple argument hold up in more complicated models of M87*?

β_2 in MAD **GRMHD simulations** of M87*

- 1600 simulated EHT-resolution M87* images from MAD simulations (Narayan+ 2022)
- Almost all 230 GHz simulation images have **negative** $arg(\beta_2)$ consistent with the measured energy outflow in the simulations
- $arg(\beta_2)$ has the **same qualitative dependence on spin** as in the BZ monopole model

Polarized images are spin dependent

- Black hole **spin winds up initially radial fields**, but always so that $B^{\phi}/B^{r} < 0$
- The field pitch angle increases with spin
- Increased field winding
 - increases the Poynting flux (BZ jet power)

Polarized images are spin dependent

- Black hole spin winds up initially radial fields, but always so that $B^{\phi}/B^{r} < 0$
- The field pitch angle increases with spin
- Increased field winding
 - increases the Poynting flux (BZ jet power)
 - makes the observed polarization pattern more radial

How can we determine the jet power source?

By zooming **out**..

Image the connection between the BH and the low-brightness extended jet in high dynamic range with the next-generation EHT (ngEHT)

By zooming in..

Image field lines close to the event horizon in **high resolution** with the **Black Hole Explorer (BHEX)**

The next-generation EHT (ngEHT)

Increased coverage from new sites and observing frequencies in ngEHT will enhance dynamic range

2017: Observations at 6 distinct sites

2018: Observations at 7 sites (+ GLT)

2024-25: 230+345 GHz observations

2030s: tri-band observations at 14 sites

2021-22: Observations at 9 sites (+ Kitt Peak & NOEMA)
$$N_{
m obs}=egin{pmatrix}N_{
m sites}\\2\end{pmatrix}\propto N_{
m sites}^2$$
 2024-25: 230+345 GHz observations

To look for energy extraction, we need to zoom out

- New sites & larger bandwidth will enhance EHT's dynamic range and illuminate the BH-jet connection
- Measuring polarization as a function of radius probes energy flow at different scales
- Polarization of BZ jets has a strong signature of spin at the light cylinder (Gelles, Chael, & Quataert 2025)

The Black Hole Explorer (BHEX)

Earth-Space VLBI at 1.3 mm

- 3.5 m dish in 20,000 km orbit
- Simultaneous dual-band observations (80 + 240 GHz)
- Leverages existing ground infrastructure & pioneers optical laser downlink
- Targeting a 2025 SMEX proposal

BHEX Science Goals

- Discover a black hole's photon ring
- Make direct measurements of a black hole's mass and spin
- Reveal the shadows of dozens of supermassive black holes

To look for energy extraction, we need to zoom in

- $oldsymbol{\beta}_2$ evolves rapidly close to the horizon from both **field wind-up** and **parallel transport**
 - Strong evolution of $arg(\beta_2)$ to the horizon is predicted by both analytic BZ models and GRMHD

To look for energy extraction, we need to zoom in

- $oldsymbol{\beta}_2$ evolves rapidly close to the horizon from both **field wind-up** and **parallel transport**
 - Strong evolution of $arg(\beta_2)$ to the horizon is predicted by both simple BZ models and GRMHD
- BHEX + EHT obtain the resolution to observe energy extraction at horizon scales

The future of near-horizon black hole astrophysics

- Expand all EHT sites to multi-frequency observing and add
 4-5 new stations (Doeleman+ 2023)
- Image black holes and AGN jets in high dynamic range
- Probe black hole jet launching from horizon to hundreds of Schwarzschild radii (Gelles+ 2024: 2410.00954)

Black Hole Explorer (BHEX)

- NASA SMEX proposal for a mmVLBI telescope in mid-earth orbit (Johnson+ 2024).
- Image black holes and other sources in **high resolution**
- Image extreme gravitational lensing and measure BH spin by resolving the **photon ring** (Lupsasca+ 2024).
- Expand number of horizon-scale sources from 2 to ~12 (Zhang+ 2024)

Takeaways...

- 1. Polarization is the key for constraining near-horizon astrophysics, and indicates that accretion in M87* is likely magnetically arrested
- 2. GRMHD simulations for interpreting EHT images can be extended with **force-free evolution and electron thermodynamics.**
- 3. EHT polarization images are **consistent with outward horizon-scale electromagnetic energy flux**
- **4. Future ground and space-based observations** will directly probe the black hole-jet connection

...and more questions

- What plasma physics sets the temperature/distribution of the electrons?
- What powers flares in Sgr A* and M87*?
- What can EHT/BHEX observation tell us about the near-horizon environments of supermassive black holes beyond Sgr A* and M87*?

