Polarization Signatures of Jet Launching on Horizon Scales

Andrew Chael Princeton Gravity Initiative 4/11/24

Event Horizon Telescope

Jets are thought to be powered by black hole spin energy extracted via magnetic fields (Blandford & Znajek 1977) Is it possible to observe black hole energy extraction **on horizon scales**?

Credit: EHTC, NASA/Swift; NASA/Fermi; Caltech-NuSTAR; CXC; CfA-VERITAS; MAGIC; HESS: arXiv 2104.06855

M87's Jet in Simulations

Jets from General Relativistic
 Magnetohydrodyamic (GRMHD)
 simulations are powered by black
 hole spin

(e.g. McKinney & Gammie 2004, Tchekhovskoy+ 2012, EHTC+ 2019, Narayan+ 2022)

- **Radiative** GRMHD simulations naturally produce the correct:
 - jet power
 - wide opening angle
 - core-shift
- Can we be sure the jet is BZ?
 What is a physically meaningful observation of horizon-scale energy flow?

The Event Horizon Telescope: Instrument

EHTC+ 2019, Paper II

The Event Horizon Telescope: People

300+ members
60 institutes
20 countries

from Europe, Asia, Africa,
North and South America.

M87* in linear polarization

Total intensity

Linear Polarization

- Polarization is concentrated in the southwest
- Polarization angle structure is predominantly helical
- Overall level of polarization is **weak**, ~15 %

Why polarization?

50 μ as

Synchrotron radiation is emitted with polarization **perpendicular** to magnetic field lines

Polarization transport is sensitive to the magnetic field, plasma, and spacetime

Synchrotron polarization traces magnetic fields?

50 μ as

GR and Faraday effects make the situation in M87* more complicated!

Faraday Rotation is important! With rotation Without rotation 0.300.300.250.25Fractional Polarization m Fractional Polarization 'infinite' resolution 0.050.05 $40 \ \mu as$ $40 \ \mu as$

0.00

Significant Faraday rotation on small scales
 → scrambles polarization directions

0.00

Faraday Rotation is important!

- Significant Faraday rotation on small scales
 - \rightarrow scrambles polarization directions
 - \rightarrow depolarization of the image when blurred to EHT resolution
 - ightarrow rotates the pattern when blurred to EHT resolution

GRMHD Simulation library 2 field states, 5 spins, >180k images

native resolution

EHT resolution

Images modeled with the ipole GRRT code (Moscibrodzka & Gammie 2018) Two-temperature plasma model from Moscibrodzka et al. 2016

$$\frac{T_i}{T_e} = R_{\text{high}} \frac{\beta^2}{1+\beta^2} + R_{\text{low}} \frac{1}{1+\beta^2}$$

EHTC+ VIII 2021 (**Chael**, paper coordinator) Animation credit: Ben Prather

What is the magnetic field structure close to the horizon?

Two accretion states that depend on the accumulated magnetic flux on horizon

'Strong' fields mean dynamically important ones \rightarrow ~10-100 G at the horizon for M87 Blandford-Znajek (1977): $P_{\text{jet}} \propto \Phi_B^2 a_{\mu}^2$ BH spin magnetic flux

Image credit: Riordan+ 2017

Scoring simulations with polarization: Results

- Scoring with multiple approaches all strongly favor a magnetically arrested accretion flow
- We constrain M87*'s allowed accretion rate by 2 orders of magnitude:

 $\dot{M} \simeq (3 - 20) \times 10^{-4} M_{\odot} \text{ yr}^{-1}$ $(\dot{M}_{\text{Edd}} = 137 M_{\odot} \text{ yr}^{-1})$

 Strong fields more easily launch jets at lower values of BH spin

Polarized Images of M87* and horizon-scale energy flow

- The polarization spiral's **2nd Fourier mode** (β_2 : Palumbo+ 2020) is the **most constraining** image feature
- Can we interpret β_2 physically?

Cartoon model: $\arg(\beta_2)$ is connected to the pitch angle B^{ϕ}/B^{r}

- Face on fields, no Faraday rotation, no optical depth, no relativity
- Coordinate axis is **into the screen/sky** (EHT Paper V, 2019)

$\arg(\beta_2)$ is connected to the **electromagnetic energy flux**

Radial Poynting flux in Boyer-Lindquist coordinates:

$$\mathcal{J}_{\mathcal{E}}^{r} = -T_{t \text{ EM}}^{r} = -B^{r}B^{\phi}\Omega_{F}\Delta\sin^{2}\theta$$
fieldline angular speed

$\arg(\beta_2)$ is connected to the electromagnetic energy flux

- The sign of $\arg(\beta_2)$ is directly connected to the direction of Poynting flux, assuming we know the sign of Ω_F
- Ignoring Faraday effects, the EHT's measurement of β₂ implies electromagnetic energy is outflowing in M87*
- This inference requires we assume fieldlines co-rotate with the emitting plasma in a clockwise sense
- Does this simple argument hold up in more complicated models?

 $B^{\phi}/B^{r} < 0$

$\arg(\beta_2)$ in MAD **GRMHD simulations** of M87*?

- 1600 simulated EHT-resolution M87* images from MAD simulations (Narayan+ 2022)
- Almost all 230 GHz simulation images have **negative** $\arg(\beta_2)$ consistent with the measured energy outflow in the simulations
- arg(β₂) has the same qualitative dependence on spin as in a simple BZ monopole model!

Polarized images are **spin dependent**

- Black hole spin winds up initially radial fields, but always so that $B^{\phi}/B^{r} < 0$
- The field pitch angle increases with spin
- Increased field winding
 - increases the BZ jet power
 - and makes the observed polarization pattern more radial

To look for energy extraction, we need to zoom in

- Measuring polarization as a function of radius **probes energy flow at different scales**
- Both simple models and GRMHD simulations make a strong prediction
 - $\arg(\beta_2)$ evolves rapidly close to the horizon as the rest frame fields become more azimuthal from **GR frame dragging**

To look for energy extraction, we need to zoom **out**

- New telescope sites & larger bandwidth will enhance EHT's **dynamic range**
 - These will illuminate both the **BH-jet connection**
- These new observations will require new theoretical models and simulations to fully interpret
 - Can we directly measure energy flow from the horizon through the jet base?

Aside: Sgr A* in linear polarization

Total intensity

Linear Polarization

- Polarization fraction is **higher** than M87
- β_2 is consistent with **clockwise rotation** measured in NIR flares
- MAD simulations prefeerred where is the jet?

Takeaways:

 EHT observations of M87* and Sgr A* in polarization are our most constraining probes of near-horizon magnetic fields and extragalactic jet launching at the central engine

- EHT polarization data singles out magnetically arrested accretion disk models:
 - The magnetic field is dynamically important at the event horizon in M87* and Sgr A*
- The azimuthal structure of the linear polarization in M87* is consistent with outward Poynting flux
 - To use polarization to test the BZ mechanism for black hole energy extraction, we will need to track polarization on **multiple scales**