Horizon-scale images of black hole accretion and jet launching

Andrew Chael

Princeton Gravity Initiative

UC Berkeley Astronomy Colloquium 02/16/2023

Event Horizon Telescope

Supermassive black holes (and jets) are everywhere

Credits: Sara Issoun, (M87: HST), (Cyg A: Chandra/HST/VLA (Cyg A), (Cen A: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)), (NGC 1265: M. Gendron-Marsolais et al.; S. Dagnello, NRAO/AUI/NSF; Sloan Digital Sky Survey),(3C293, Chandra),(Hercules A, HST/VLA),(NGC1265,M. Gendron-Marsolais et al.; S. Dagnello, NRAO/AUI/NSF; Sloan Digital Sky Survey),(3C296, AUI, NRAO)

The Black Hole Shadow

• The shadow boundary separates of rays that end on the event horizon with those that escape to infinity

The Event Horizon Telescope

EHTC+ 2019, Paper II

Image Credits: HST(Optical), NRAO (VLA), Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm), EHT (1.3 mm)

At the heart of M87...

What we know:

- Supermassive black hole with mass $Mpprox 6 imes 10^9 M_{\odot}$
- Hot ($T \gtrsim 10^{10}$ K), sub-Eddington accretion flow emitting synchrotron radiation
- Launches a powerful relativistic jet ($P_{\rm jet} \ge 10^{42} {\rm ~erg~s^{-1}}$)

Questions I think about:

- Is the jet launched by extracting BH spin energy?
 - What is the strength and geometry of the magnetic field?
- How can we perform precise tests of gravity?
 - What will we see with upgraded EHT observations?
- What small-scale plasma physics accelerates electrons and lights up the flow?
 - What powers X-ray/ γ -ray flares in Sgr A* and M87*?

My Research

This talk:

Focused on M87*, not Sgr A* (but ask me questions!)

Outline:

- 1. How do we make resolved images of supermassive black holes?
- 2. What have we learned from near-horizon images?
- 3. What could we see next?

This talk:

Focused on M87*, not Sgr A* (but ask me questions!)

Takeaways:

- 1. Near-horizon imaging required **new algorithms**
 - These techniques have wide applicability in interferometry
- 2. Polarization is the key for near-horizon astrophysics
 - Polarized images of M87* show its accretion is **magnetically arrested**
- 3. We are just getting started in what we can learn from resolved black hole images
 - Future EHT observations will reveal the jet base and inner shadow

The Event Horizon Telescope: People

300+ members
60 institutes
20 countries

from Europe, Asia, Africa,
North and South America.

Part I:

How do we make resolved images of supermassive black holes?

Chael+ 2016, 2018a, 2023 EHTC+ 2019 Paper IV, 2022 Paper VII (**Chael**, paper coordinator) arXiv: 1605.06156, 1803.07088, 2210.12226, 1906.11241, 2105.01169

EHT 2017 Observations

Observation run day three

Photo credits: avid Michalik, Junhan Kim , Salvaor Sanchez, Helge Rottman Jonathan Weintroub, Gopal Narayanan

EHT Instrumentation – processes and records data at 8 Gb/sec

EHT backends are

Roach2 hardware!

built on CASPER

CASPER

Vertatschitsch+ 2015, EHTC+ 2019 Paper II Image Credit: MIT Haystack Observatory

Very Long Baseline Interferometry (VLBI)

EHT coverage is **sparse**: inversion of image from the data is highly unconstrained

movie credit: Katie Bouman

Very Long Baseline Interferometry (VLBI)

EHT coverage is **sparse**: inversion of image from the data is highly unconstrained

movie credit: Daniel Palumbo

Challenges of near-horizon imaging

Traditional Approach: CLEAN

Regularized Maximum Likelihood

The eht-imaging software library

- Large python toolkit for analyzing, plotting, simulating, and imaging interferometric data
- Flexible framework for developing tools:
 - polarimetric imaging, dynamical imaging, multi-frequency imaging, geometric modeling

achael/eht-imaging

Imaging, analysis, and simulation software for radio interferometry

우 26	St 11	☆ 5k	앟 489
Contributors	Used by	Stars	Forks

- Uses:
 - All EHT imaging results to date
 - EHT calibration software
 - Forecasting from simulations
 - Imaging & analysis from VLBA, GMVA, ALMA....

https://github.com/achael/eht-imaging
pip install ehtim

New imaging techniques have wide applicability! HL Tau with ALMA

New imaging techniques have wide applicability! 3C279 with *RadioAstron*

- At 22 GHz (1.3 cm) observed in 2014
- Space baselines to *RadioAstron* supported by a ground array of 23 antennas
- Reconstruction with eht-imaging.

Polarimetric images of M87*

- Polarization is concentrated in the southwest
- Polarization angle structure is predominantly **helical**
- Overall level of polarization is **somewhat weak**, ~15 %

Validation is essential: use multiple methods

Part II: What have we learned from near-horizon images?

EHTC Polarization team (Paper VII-VIII)

Jason Dexter

coordinators

Andrew Chael

Sara Issaoun

Alejandra Jiménez-Rosales Daniel Palumbo

Avery Broderick

Jongho Park

Ben Prather

Maciek Wielgus

Dom Pesce

Charles Gammie

Angelo Ricarte

George Wong

EHTC+ 2021 Papers VII & VIII (Chael, paper coordinator) ArXiv: 2105.01169, 2105.01173

Theoretical Tools for Interpreting Black Hole Images

GRMHD Simulations

Solves coupled equations of plasma dynamics and magnetic field in Kerr spacetime

GR Radiative Transfer

Tracks light rays and solves for the polarized radiation (including Faraday effects)

Movie Credits: Chael+ 2019, Ben Prather (right)

Interpreting Images with GRMHD Simulations

 General Relativistic MagnetoHydroDynamic simulations solve the coupled equations of plasma and magnetic fields in the Kerr spacetime

• GRMHD simulations are the primary theoretical tool for interpreting EHT images.

- GRMHD simulations naturally couple the accretion disk, black hole, and jet
 - Jet launching in simulations is universal and driven by BH spin

Magnetic field structure in sub-Eddington accretion

Two accretion states that depend on the accumulated magnetic flux on horizon

Image credit: Riordan+ 2017

Scoring GRMHD Simulations: before polarization

• Most simulation models can be made to fit total intensity observations alone by tweaking free parameters (BH mass, position angle)

• Can we do better with polarization?

Synchrotron polarization traces magnetic fields

Synchrotron radiation is emitted with polarization **perpendicular** to the magnetic field line

EHTC+ 2021 Papers VII & VIII (Chael, paper coordinator/writing team) Movie Credit: Ivan Marti-Vidal

Synchrotron polarization traces magnetic fields

50 μ as

Light bending and Faraday effects make the situation in M87* more complicated!

EHTC+ 2021 Papers VII & VIII (**Chael**, paper coordinator/writing team) Movie Credit: Ivan Marti-Vidal

(Internal) Faraday rotation matters!

- Significant Faraday rotation on small scales
 - \rightarrow scrambles polarization directions
 - → depolarizes and rotates the image when blurred to EHT resolution This means the emitting plasma is not (completely) made of pairs!

GRMHD Simulation library 2 field states, 5 BH spins, 72k images

"infinite" resolution

EHT resolution

Light-bending and Faraday effects are built in (ipole code, Mościbrodzka et al. 2016)

EHTC+ 2021 Paper VIII (**Chael**, paper coordinator) Animation Credit: Ben Prather

Scoring a polarized image

- We compare EHT images to GRMHD images using several summary statistics
- These metrics include the total and average polarization fraction
- The **most constraining metric** is the 2nd Fourier coefficient characterizing the azimuthal structure:

Palumbo+ 2020 EHTC+ 2021 Paper VIII (**Chael**, paper coordinator)

Polarimetric simulation scoring

 Scoring with multiple approaches all strongly favor a magnetically arrested accretion flow

- Implications for accretion and jet launching:
 - Narrows M87*'s allowed accretion rate by 2 orders of magnitude:

 $\dot{M} \simeq (3 - 20) \times 10^{-4} M_{\odot} \text{ yr}^{-1}$ $(\dot{M}_{\text{Edd}} = 137 M_{\odot} \text{ yr}^{-1})$

 Strong fields more easily launch jets at lower values of BH spin

Electron Heating and Cooling

Simulations with radiation & heating can produce very different emission profiles than are found in postprocessing techniques! • M87* and Sgr A* have two-temperature plasmas

$$T_{\rm e} \neq T_{\rm i}$$

- EHT analysis fixes $T_{\rm e}$ locally in **postprocessing:**
 - Major uncertainty in EHT analysis
 - Most GRMHD simulations don't produce bright jets!
- Radiative, Two-Temperature GRMHD includes heating and cooling self-consistently:
 - Sub-grid plasma heating model still uncertain

Very Soon: Circular Polarization

• Circular polarization in models can better constrain plasma properties, including particle composition

• Stay tuned!

EHTC Paper IX in prep (**Chael**, coordinator)

Part III: What will we see in next-generation images?

Chael+2019, 2021, 2023 arXiv: 1810.01983, 2106.00683, 2210.12226

M87 Jets from two-temperature Simulations

Jets from magnetically arrested **two-temperature** simulations naturally produce:

- jet power in measured range
- observed wide opening angle
- observed core-shift

The observed limb-brightening is hard to reproduce

• Nonthermal distributions?

The black hole-jet connection at 230 GHz

Linear Scale

Log Scale

0.0 yr

2017 EHT observations

Adding 345 GHz will increase resolution

Increased (u,v) filling from new sites in ngEHT will enhance dynamic range

The next-generation EHT (ngEHT)

Adding 345 GHz will increase resolution

Increased (u,v) filling from new sites in ngEHT will enhance dynamic range

2017: Observations at 6 distinct sites $N_{\rm obs} = \begin{pmatrix} N_{\rm sites} \\ 2 \end{pmatrix} \propto N_{\rm sites}^2$ **2018**: Observations at 7 sites (+ GLT) $N_{\rm obs} = \begin{pmatrix} N_{\rm sites} \\ 2 \end{pmatrix} \propto N_{\rm sites}^2$ **2021-2022**: Observations at 9 sites (+ Kitt Peak & NOEMA)

EHT Ground Astro2020 APC White Paper (Blackburn+ 2019; arXiv:1909.01411)

ngEHT: a high dynamic range black hole imager

- Increased (*u*,*v*) filling from new telescope sites in ngEHT will enhance image **dynamic range**
 - High dynamic range images will illuminate the **BH-jet connection**
 - High dynamic range images may also reveal the 'inner shadow'

Multifrequency near-horizon imaging with the ngEHT

Spectral Index Reconstruction

Multi-frequency ngEHT images can probe the **electron temperature and distribution function** in the disk, jet, and interface

> Chael+ 2023 Simulation: Mizuno+ 2021

Using eht-imaging software: https://github.com/achael/eht-imaging

High-dynamic-range near the horizon: the inner shadow

Inner shadow in magnetically arrested simulation images

- The inner shadow is lensed image of the equatorial event horizon
- Redshift means the edge of the inner shadow in real images only asymptotically approaches the horizon
- the correspondence becomes better at higher dynamic range

Black hole image substructure: photon rings and the inner shadow

Chael+ 2021, Levis+ 2022 Plots from my code **kgeo**: <u>https://github.com/achael/kgeo</u>

Inner shadow images provide another probe of spacetime

- The inner shadow changes in shape and size with spin and inclination
- If observable, it would provide a second set of constraints on the metric from the photon ring / "outer" shadow

Inner shadow

Inner shadow images provide another probe of spacetime

Toy example of determining mass and spin with inner shadow (blue) and photon ring (red) radius measurements for **M87***

(bands represent measurement uncertainties of 0.1, 0.5, 1 uas)

With **two** curves in the image (the inner shadow and photon ring), we can measure **relative sizes** (and positions), removing degenercies in estimating mass & spin

Chael+ 2021

ngEHT should detect the inner shadow

- New fast, GPUaccelerated Bayesian imaging code comrade (Paul Tiede, CfA)
- Imaging algorithms can detect the inner shadow in ngEHT data – analytic modeling may constrain its shape more precisely

https://github.com/ptiede/Comrade.jl

Conclusion: The future of black hole imaging is bright

Takeaways...

1. Near-horizon imaging required advances in **algorithms and validation**

- New techniques have wide applicability to interferometry
- 2. Polarization is the key for near-horizon astrophysics
 - Polarized images strongly constrain the field structure at M87*'s jet base --> the accretion disk is magnetically arrested
- 3. We are just getting started in what we can learn from black hole images
 - Interpreting images of the **black hole-jet connection** will require radiative simulations that correctly light up the jet
 - The ngEHT should see the black hole's **inner shadow**, significantly strengthening EHT spacetime measurements

Takeaways...

1. Near-horizon imaging required advances in **algorithms and validation**

- New techniques have wide applicability to interferometry
- 2. Polarization is the key for near-horizon astrophysics
 - Polarized images strongly constrain the field structure at M87*'s jet base --> the accretion disk is magnetically arrested
- 3. We are just getting started in what we can learn from black hole images
 - Interpreting images of the **black hole-jet connection** will require radiative simulations that correctly light up the jet
 - The ngEHT should see the black hole's **inner shadow**, significantly strengthening EHT spacetime measurements

...and more questions

- Can we measure black hole energy extraction in M87*?
- What plasma physics sets the temperature/distribution of the electrons?
- What powers flares in Sgr A* and M87*?
- What can EHT/ngEHT observation tell us about the near-horizon environments of supermassive black holes beyond Sgr A* and M87*?

EHTC+ 2021 Paper VII, Chael+2019,2021