Horizon-scale polarization and magnetic fields in M87* from the EHT

Andrew Chael

(he/him)

NHFP Fellow Princeton University

March 30, 2021

Event Horizon Telescope

The EHT Collaboration

Challenges of EHT polarimetric imaging

u-v coverage is **sparse**: inversion of image from the data is highly unconstrained

April 11 |*m*| v (GA) -550 u (G**λ**) $\tilde{I}(u,v) = \int I(x,y)e^{-2\pi i(xu+yv)} dx dy$ $\tilde{Q}(u,v) = \int Q(x,y)e^{-2\pi i(xu+yv)} dx dy$ $\tilde{U}(u,v) = \int U(x,y) e^{-2\pi i (xu+yv)} \, dx \, dy$

Need to solve for terms in telescope Jones matrices **at the same time** as the image structure

Polarimetric **leakage** (and complex gains) at each station are **unknown**

 $\boldsymbol{J} = \boldsymbol{G} \boldsymbol{D} \Phi = \begin{pmatrix} G_R & 0 \\ 0 & G_L \end{pmatrix} \begin{pmatrix} 1 & D_R \\ D_L & 1 \end{pmatrix} \begin{pmatrix} e^{-i\phi} & 0 \\ 0 & e^{i\phi} \end{pmatrix}.$

Images for April 11 from five vetted methods

- Methods include CLEAN-based calibration algorithms (polsolve/LPCAL), gradient descent optimization (eht-imaging), and full Bayseian posterior sampling (DMC/Themis)
- All methods show similar polarization structure
- Polarized in the South-West part
- Overall weak polarization, |m| rises to ~15 %
- Contours: 20, 10, 5 μJy/μas²

Fiducial Method-Averaged Images

Polarimetric image metrics

Unresolved polarization fraction

$$|m|_{\text{net}} = \frac{\sqrt{(\sum_{i} Q_i)^2 + (\sum_{i} U_i)^2}}{\sum_{i} I_i}$$

Average resolved polarization fraction

$$\langle |m| \rangle = \frac{\sum_{i} \sqrt{Q_{i}^{2} + U_{i}^{2}}}{\sum_{i} I_{i}}$$

Azimuthal structure 2nd Fourier mode

$$\beta_2 = \frac{1}{I_{\rm ring}} \int_{\rho_{\rm min}}^{\rho_{\rm max}} \int_{0}^{2\pi} P(\rho,\varphi) \, e^{-2i\varphi} \, \rho \, d\varphi \, d\rho$$

 $|m|_{net} = 1.4\% < |m| > = 6.5\%$ $|m|_{net} = 1.7\% < |m| > = 10.0\%$ $|\beta_2| = 0.05 \text{ arg}(\beta_2) = -137 \text{ deg}$ $|\beta_2| = 0.06 \text{ arg}(\beta_2) = -129 \text{ deg}$ 0.25 0.20,9 0.05 40 µas 40 µas $|m|_{net} = 5.6\% < |m| > = 37.7\%$ $|m|_{net} = 1.4\% < |m| > = 2.9\%$ $|\beta_2| = 0.35 \ arg(\beta_2) = -28 \ deg$ $|\beta_2| = 0.01 \text{ arg}(\beta_2) = -58 \text{ deg}$ Ξ 15d la 40 µas 40 µas

GRMHD images can be **strongly** or **weakly** polarized: with **patterns** that are radial/toroidal/helical

Palumbo+ 2020, EHTC+2021

Polarimetric image metrics

Unresolved polarization fraction

$$m|_{\text{net}} = \frac{\sqrt{(\sum_{i} Q_i)^2 + (\sum_{i} U_i)^2}}{\sum_{i} I_i}$$

Average resolved polarization fraction

$$|m|\rangle = \frac{\sum_{i} \sqrt{Q_{i}^{2} + U_{i}}}{\sum_{i} I_{i}}$$

Azimuthal structure 2nd Fourier mode

$$\beta_2 = \frac{1}{I_{\rm ring}} \int_{\rho_{\rm min}}^{\rho_{\rm max}} \int_{0}^{2\pi} P(\rho, \varphi) \, e^{-2i\varphi} \, \rho \, d\varphi \, d\rho$$

We explore the **distributions** of these metrics for each method sampling different D-term calibration solutions

We define a final **range** for each parameter that accounts for systematic uncertainty among imaging methods

Parameter	Min	Max
$ m _{\rm net}$	1.0%	3.7%
$\langle m \rangle$	5.7%	10.7%
$ \beta_2 $	0.04	0.07
$\angle \beta_2$	-163°	-127°

What do the images say about the near-horizon magnetic field structure?

General Relativistic Magnetohydrodynamic (GRMHD) Simulations show two accretion states that depend on the accumulated magnetic flux on horizon

Note: 'strong' fields mean dynamically important ones – still only ~10 G at the horizon for M87

Synchrotron polarization traces magnetic fields

Image credit: EHTC VIII 2021, Open University

Synchrotron polarization traces magnetic fields

GR and Faraday effects make the situation in M87* much more complicated!

Image credit: EHTC VIII 2021, Open University

Relativity matters!

image

Field

3 simple models, viewed face on

Credit: EHTC+ VIII 2021 Jiménez-Rosales+ 2018

Faraday rotation matters!

'infinite' resolution ~EHT resolution $|m|_{net} = 2.4\% < |m| > = 38.2\%$ $|m|_{net} = 2.4\% < |m| > = 6.5\%$ $|\beta_2| = 0.08 \text{ arg}(\beta_2) = -162 \text{ deg}$ $|\beta_2| = 0.04 \ arg(\beta_2) = -153 \ deg$ 0.25Weakly Fractional Polarization Fractional Polarization polarized model 0.050.05 $40 \ \mu as$ 40 µas $|m|_{net} = 9.6\% < |m| > = 27.8\%$ $|m|_{net} = 9.6\% < |m| > = 54.4\%$ $|\beta_2| = 0.26 \text{ arg}(\beta_2) = -79 \text{ deg}$ $|\beta_2| = 0.42 \ arg(\beta_2) = -79 \ deg$ 0.25ш Strongly Fractional Polarization Fractional Polarization polarized model 0.050.05 $40 \ \mu as$ $40 \ \mu as$

- Significant Faraday rotation on scales smaller than the EHT beam → scrambled polarization directions → depolarization of the image observed by the EHT
- Faraday rotation strength is a direct probe of the plasma parameters (density/temperature/B-field).

GRMHD Simulation library 2 field states, 5 spins, 72k images

native resolution

EHT resolution

Images modeled with the ipole GRRT code (Moscibrodzka & Gammie 2018) Two-temperature plasma model from Moscibrodzka et al. 2016 $R = \frac{T_i}{T_c} = R_{high} \frac{\beta^2}{1+\beta^2} + R_{low} \frac{1}{1+\beta^2}$

Animation credit: George Wong

GRMHD simulation scoring shows a strong preference for magnetically arrested disks in M87

- Two scoring approaches:
 - 'joint' (construct a likelihood comparing to mean simulation values, assuming parameters are independent).
 - 'simultaneous' (demand individual images satisfy all image constraints at once)
- Both approaches strongly favor magnetically arrested simulations
- The two approaches differ in other details (especially in which electron heating parameters they favor).
- An additional constraint on the jet power rejects all surviving non-MAD simulations (and all spin-zero simulations)

Implications for M87*'s accretion

 Surviving models significantly tighten constraints on accretion rate from total intensity results:

 $\dot{M} \simeq (3 - 20) \times 10^{-4} M_{\odot} \text{ yr}^{-1}$

 Constrains the electron temperature, number density, and magnetic field strength (in agreement with estimates from simple one-zone models):

$$T_e \simeq (5 - 40) \times 10^{10} \text{ K}$$

 $|B| \simeq (7 - 30) \text{ G}$
 $n \sim 10^{4-5} \text{ cm}^{-3}$

Radiative efficiency ~1%

Future:

- **Time variability**: GRMHD simulations predict variability in the polarization structure / magnitude on month-year timescales. Observing regularly will tighten these constraints
- **Model space**: need to add tilted disk models and a broader range of black hole spins and electron heating/acceleration parameters
- Array improvements: will allow us to connect near-horizon structure to faint jet emission at 230 GHz and connect 230 GHz to 345 GHz structure

Image Credits: HST(Optical), NRAO (VLA), Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm), EHT (1.3 mm)