Photographing a Black Hole with the Event Horizon Telescope

Andrew Chael

NHFP Fellow Princeton University

July 10, 2020

The EHT Collaboration

The EHT: Many antennas, lots of software, one **computational** telescope

Result papers: EHTC+ 2019 papers 1-6: <u>https://iopscience.iop.org/journal/2041-8205/page/Focus_on_EHT</u> Story on software behind many steps of the EHT process: <u>https://www.welcometothejungle.com/en/articles/btc-black-hole-imaging-software-telescope</u>

What does a black hole look like?

The Black Hole Shadow

Accretion Energy: black holes can shine brightly

Accretion power per unit mass:

$$\Delta E/mc^2 = GM/Rc^2$$
$$= 1/2 \text{ at } R = R_{\rm Sch}$$

For nuclear fusion:

$$\Delta E/mc^2 = 0.007$$

Active Galactic Nuclei

Image Credits: NRAO (VLA), Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm), EHT (1.3 mm)

The Black Hole Shadow: Modern Simulations

$$r_{\rm shadow} = \sqrt{27} GM/c^2$$

Schnittman+ (2006)

How big is the shadow?

M87 is supermassive, so it's shadow is big:

$d_{\rm shadow} \approx 650 \, {\rm AU}$

Unfortunately, M87 is really far away.....

$D_{\rm M87} \approx 50$ million ly

To us, M87's shadow is really, really, really small

$$\frac{d_{\rm shadow}}{D_{\rm M87}} \approx 40 \mu \rm{as} \approx 10^{-8} \rm{deg}$$

How small is 40 microarcseconds?

Animation credit: Alex Parker

Oran Belacik theoly to on Shadow

Slide credit: Katie Bouman Video courtesy of Hotaka Shiokaw

Each Pixel is 1.5 Million

The EHT: Many antennas, one **computational** telescope

The Physical EHT

Photo Credits: EHT Collaboration 2019 (Paper III) ALMA, Sven Dornbusch, Junhan Kim, Helge Rottmann, David Sanchez, Daniel Michalik, Jonathan Weintroub, William Montgomerie, Tom Folkers, ESO, IRAM

... and many, many more

Very Long Baseline Interferometry (VLBI)

Fourier Domain Measurements

Slide Credit: Katie Bouman

Very Long Baseline Interferometry (VLBI)

North-South Frequency (v)

Fourier Domain Measurements

East West Frequency (u)

Earth's Rotation gives us more measurements

Fourier Domain Measurements

East West Frequency (u)

EHT 2017 Observations

Observation run day three

David Michalik, Junhan Kim , Salvaor Sanchez, Helge Rottman Jonathan Weintroub, Gopal Narayanan

EHT 2017 Observations

The VLBI monitor helps us track current and forecasted weather, and telescope operations <u>https://vlbimon1.science.ru.nl/login.html</u> o credits:

David Michalik, Junhan Kim , Salvaor Sanchez, Helge Rottman Jonathan Weintroub, Gopal Narayanan

EHT Instrumentation – records data at 8 Gb/sec

EHTC+ 2019, ApJL, 875, L2 (Paper II)

[64 TB]

The EHT data pipeline

digital

recorder

EHT correlator

Calibration

EHTC+ 2019, ApJL, 875, L3 (Paper III) Animation credit: Lindy Blackburn

Data Calibration: correcting for atmospheric turbulence

Combination of specialized/old C code for VLBI: with new python interfaces and plotting: <u>https://github.com/sao-eht/eat</u>

Image Credit: Lindy Blackburn

Data Validation: statistical checks

Verify calibration by pipeline cross-comparison across frequency bands, polarizations, and visibility quantities.

Pandas & Scipy critical for automating many validation tasks!

Image Credit: Maciek Wielgus

Solving for the Image

Two Classes of Imaging Algorithms

$$\mathbf{\hat{x}}_{\text{map}} = \operatorname{argmax}_{\mathbf{x}} \left[\log p(\mathbf{y}|\mathbf{x}) + \log p(\mathbf{x})\right]$$

Forward Modeling (Regularized Maximum Likelihood)

RML Imaging software developed for the EHT

eht-imaging: Chael+, Harvard/SAO

	a ehtim 1.2
Search docs	
Image	
Array	
Obsdata	
Movie	
Vex	
Imager	
Calibration	
Plotting	
Scattering	
Statistics	

Docs » ehtim (eht-imaging)

View page source

ehtim (eht-imaging)

Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This version is an early release so please submit a pull request or email achael@cfa.harvard.edu if you have trouble or need help for your application.

The package contains several primary classes for loading, simulating, and manipulating VLBI data. The main classes are the Image, Array, and obsdata, which provide tools for manipulating images, simulating interferometric data from images, and plotting and analyzing these data. Movie and Vex provide tools for producing time-variable simulated data and observing with real VLBI tracks from .vex files. imager is a generic imager class that can produce images from data sets in various polarizations using various data terms and regularizers

Note

This is a pre-release of ehtim. If you have a problem please submit a pull request on the git repository and/or email achael@cfa.harvard.edu

Installation

Download the latest version from the GitHub repository, change to the main directory and run:

SMILI: Kazu Akiyama+, MIT Haystack / NAOJ

♂ SMILI latest	Docs » SMILI Q Edit on Gi
earch docs	
. Installation	SMILI
Tutorial and Example Scripts	Sparse Modeling Imaging Library for Interferometry
License References Developer Team and Related Links Acknowledgement	This website is the documentation for SMILI. SMILI is a python-interfaced library for interferometric imaging using sparse sampling techniques. SMILI is mainly designed for very lo baseline interferometry, and has been under the active development primarily for the Event Horizon Telescope.
smili package	This documentation describes its basic usage with some example data sets. However, SMILI has been actively and dynamically developed for many new topics and challenges of the EHT. The documentation is not perfect and sometimes outdated due to dynamical changes in the data structure.
	Please contact to Kazu Akiyama at NRAO/MIT Haystack Observatory if you have any question about this library. You may contact with following other core developers, too.
	 Kazu Akiyama (The Main Developer) at NRAO/MIT Haystack Observatory Fumie Tazaki (Developer) (Japanese Only) at NAOJ Shiro Ikeda (Developer) at the Institute of Statistical Mathematics Kotaro Moriyama (Developer) at NAOJ/MIT Haystack Observatory

https://github.com/achael/eht-imaging

https://github.com/astrosmili/smili

RML Imaging software developed for the EHT -- but with wide applicability

smili

The eht-imaging software library

မို Branch: master 👻		Go to file Add file ▼ 👱 Code マ	
achael committed 50e728c on May 20		🕚 1,890 commits 🛛 🖓 6 branches 🕟 8 tags	
.github/ISSUE_TEMPLATE	Update issue templates	7 months ago	
arrays	added untracked array and example script, p	robably outdated 2 months ago	
🖿 data	overwrite old master	3 years ago	
docs	updated readme and setup	2 months ago	
ehtim	fixed bug in setup.py and summary_plots	2 months ago	
examples	added untracked array and example script, p	robably outdated 2 months ago	
models	added rowan and howes	2 years ago	
scripts	merged into master	2 months ago	
] .gitignore	modified gitignore	2 months ago	
🗅 .mailmap	Add a ".mailmap" file	3 years ago	
Dockerfile	add dockerfile	15 months ago	
LICENSE.txt	Create LICENSE	2 years ago	
README.rst	modified README	2 months ago	
requirements.txt	update dependencies	15 months ago	
🗅 setup.cfg	updated readme and setup	2 months ago	
🗅 setup.py	modified README	2 months ago	

Imaging, analysis, and simulation software for radio interferometry achael.github.io/eht-imaging/ Readme GPL-3.0 License Releases 8 V1.2.1 (Latest on May 20 + 7 releases Packages No packages published Publish your first package Contributors 18 - 🔔 🕲 🎞 🎲 🚱 🖶 + 7 contributors

කු

- Python software to image, analyze, manipulate, simulate interferometric data
- A lot of domain-specific code built up for data handling, but numpy+scipy power the main tasks!
- Flexible framework for developing new tools for imaging and model fitting

https://github.com/achael/eht-imaging Chael+ 2016, 2018

The eht-imaging software library

₽ Branch: master ◄		Go to file Add file -	½ Code →	About
achael committed 50e728c on May	20	ⓒ 1,890 commits 운 6 branch	es 🛛 😨 8 tags	Imaging, analysis, and simulation software for radio interferometry
.github/ISSUE_TEMPLATE	Update issue templates		7 months ago	${\mathscr O}$ achael.github.io/eht-imaging/
in arrays	added untracked array and example script, prob	ably outdated	2 months ago	🛱 Readme
Main imaging n 273 274	res = opt.minimize(self.objfunc, options=optdi	selfxinit, meth	minimi nod='L-BFGS plotcur)	<pre>Ze! -B', jac=self.objgrad, Publish your first package</pre>
Dockerfile	add dockerfile		5 months ago	
	Create LICENSE		2 years ago	Contributors 12
README.rst	Create LICENSE modified README		2 years ago 2 months ago	Contributors 18
C ELCENSE.txt C README.rst C requirements.txt	Create LICENSE modified README update dependencies		2 years ago 2 months ago 5 months ago	Contributors 18
CECENSE.Xt README.rst requirements.txt setup.cfg	Create LICENSE modified README update dependencies updated readme and setup		2 years ago 2 months ago 5 months ago 2 months ago	Contributors 18 () (,, ()) () () () () () () () () () () () ()

https://github.com/achael/eht-imaging Chael+ 2016, 2018

- Python software to image, analyze, manipulate, simulate interferometric data
- A lot of domain-specific code built up for data handling, but numpy+scipy power the main tasks!
- Flexible framework for developing new tools for imaging and model fitting

How do we verify what we are reconstructing is real?

Step 1: Blind Imaging

7 weeks later...

Step 1: Blind Imaging

Brightness Temperature (10^9 K)

Three pipelines, four days

Image Credit: EHT Collaboration 2019 (Paper IV)

What does this image tell us?

Previous measurements of the M87 black hole mass disagreed!

Gebhardt et al. (2011); Walsh et al. (2013)

Weighing a black hole with nested sampling

dynesty

Dynesty: pure python nested sampling code https://github.com/joshspeagle/dynesty

Also used several results from other MCMC codes and image reconstructions

Animation Credit: Dom Pesce

Directly weighing a black hole with $r_{\rm shadow} = \sqrt{27} GM/c^2$

Image Credit: EHT Collaboration 2019 (Paper VI) EHT BLACK HOLE IMAGE SOURCE: NSF

 $M = (6.5 \pm 0.7) \times 10^9 M_{\odot}$

 $\overline{R_{\rm Sch}} = 128 \,\mathrm{AU}$

Credit: R. Munroe

Masses in the Stellar Graveyard

LIGO-Virgo | Frank Elavsky | Northwestern

Credit: L. Blackburn

M87's physical environment: what's going on near the event horizon?

- Thick accretion disk of hot plasma (tens of billions of degrees K)
 - produces the strongest emission in sub-mm where the EHT observes!
- Strong and turbulent magnetic fields
- Launches a powerful relativistic jet

General Relativistic MagnetoHydroDynamics

General Relativistic Ray Tracing

Solves coupled equations of fluid dynamics and magnetic field in a black hole spacetime

Tracks light rays and solves for the emitted radiation

 \bigcirc 0 0 0 C ۲ (\Box) ۲ ۲ 0 C \bigcirc R ۲ \bigcirc C 0 C 0 0 ۲ \bigcirc \bigcirc 6 O ۲ 0 0 0 0 0 Image Library: > 60,000 simulation snapshots R)) 0 0 10 (0 \bigcirc 0 C \odot 0 \bigcirc (۲ C

Matching Simulations and Images

EHT 2017 image

Simulated image from (my) GRMHD model Simulated image reconstructed with EHT pipeline

Ring Asymmetry and Black Hole Spin

BH angular momentum determines the image orientation

BH spin-away (clockwise rotation) models are strongly favored

Next Steps

Polarization traces magnetic fields

Polarization Image Coming Soon!

Image credit: Alejandra Jiménez-Rosales

Time variability: Sgr A* Flares

 Intra-day 1.3 mm variability in Sgr A* on minute-hour timescales makes imaging very hard!

• GRAVITY NIR Interferometry: flares rotate near the horizon, $R\sim 3-5\,R_{
m Sch}\,,\,v\sim 0.2-0.3c$

Marrone+2008, Dexter+2014, Fazio+ 2018, GRAVITY Collab+ 2018b

ngEHT will illuminate the BH-jet connection

The current EHT lacks <u>short</u> baselines, which are necessary to detect extended structure.

Idea: add many more small, ~6m dishes to the array

See: EHT Ground Astro2020 APC White Paper (Blackburn, Doeleman+; arXiv:1909.01411)

Summary:

- The EHT has captured the first image of a black hole shadow in M87.
- The EHT is composed of diverse radio telescopes around the world combined into one instrument with years of collaboration and technical development
- EHT data is reduced from petabytes of recordings to kilobyte images; the data are uniquely challenging to calibrate because of the high observing frequency.
- EHT images were reconstructed from sparse data with multiple independent pipelines
- Simulations suggest that the M87 black hole is spinning and that the jet is formed by the extraction of the BH spin energy.
- The black hole mass in M87 can be measured from the shadow size; it is *really* heavy

Image Credits: NRAO (VLA), Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm), EHT (1.3 mm)