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VLBI| Review



Why do we need VLBI?

M8Y7 is supermassive, so its shadow is big:

dshadow ~ 650 AU

Unfortunately, M87 is really far away.....

Dhyig7 =~ 50 million ly

To us, M87’s shadow is really, really, really small

dS adoOw —
hadow 40pas ~ 10" 3deg
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The Event Horizon Telescope

A 1.3 mm
dEarth -~ ]_.3 X ]_010 1IN Image Credit

EHT Collaboration 2019 (Paper 11)
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VLBI Measures “Visibilities”, which correspond to
Spatial Coherence of an EM Wavefront

point source

(ELES) =1,

Sides from Lindy Blackburn



VLBI Measures “Visibilities”, which correspond to
Spatial Coherence of an EM Wavefront
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VLBI Measures “Visibilities”, which correspond to

The Fourier transform of a sky image

point source
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VLBI Measures Fourier Components Of t
image on baselines between telesco

North-South Frequency (v)
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Correlated Flux Density (Jy)
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Earth’s Rotation provides more measurements
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Raw signals

[PB]
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Correlation

[TB]

The EHT data pipeline

Calibration

[MB]

12 orders of maagnitude in data reduction




Image Credits: NRAO (VLA),
Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm),
EHT (1.3 mm)

40pas ~ 500 AU

0.01 pc ~ O0.Tmas




VLBI Imaging Methods



We don’t have enough measurements to
directly image

Frequency Measurements
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The Imaging Problem

Sparse
Measurements
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The Imaging Problem




The Imaging Problem

1 F (u,v) coverage IF
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The Imaging Problem .
irty

“Dirty Beam” image”
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CLEAN Algorithm

Sparse “Dirty” Image

Measurements
(O for all unmeasured data)
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CLEAN Algorithm

Sparse “Dirty” Image

Measurements
(O for all unmeasured data)

Transform

lteratively Find
Point Sources and
Remove Shifted
Beam
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CLEAN Algorithm

Sparse “Dirty” Image
Measurements
(O for all unmeasured data)
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Pros of CLEAN:

1. In cases of good uv coverage, CLEAN produces images consistent with the data
almost down to the noise level.

2. Each run of CLEAN takes a very short time

3. CLEAN is a standard, time-tested method and runs on a variety of platforms
(Difmap, CASA, AIPS).

Cons of CLEAN:

1. CLEAN tends to break up extended features into multiple smaller features.
2. The final, “restored” image will not fit the data

3. CLEAN requires phase-calibrated data
- EHT and other high frequency VLBI data requires a “self calibration” process



Phase Error from the atmosphere

Vmeasured — 6i(¢1_¢2) ‘/t

rue Figure credit: Katie Bouman



The importance of phase

“Dirty Beam”
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The importance of phase

“Dirty Beam”
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Closure Phase is a robust observable
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Amplitude gain errors and Closure Amplitudes

* In addition to the loss of phase from the atmosphere, individual telescopes
can also have imperfect amplitude calibration

Vineasured = G G2€i(¢1_¢2) Virue

* Closure amplitudes are invariant to these gain errors




Dealing with Amplitude and phase calibration:
CLEAN + Self Calibration loops

“Dirty” Image

Sparse Measurements

+ initial calibration guess

<

¢ < Inverse

‘;%% ' Fourier

‘ g = Transform
>

& 27
Calibrate the
data to the
final image

™~

Dirty Beam !

lteratively Find

Point Sources and
Remove Shifted
Beam

When finished,
Convolve
with Gaussian

Simulation Credit: Avery Broderick



Another Imaging Approach:
Bayesian Model Inversion

Atmospheric Phase
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Bayesian Model Inversion

True Image

Reconstruction

Image Credit: Katie Bouman

Simulation Credit: Avery Broderick



True Image
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Imaging with Regularized Maximum Likelihood

“hyperparameters”

\
Minimize: J(I): Z aél d)— Z ﬁRSR I).

data terms I regularizers

Any data product

(with approx. Gaussian errors)

Regularizers

- Flexible framework enables development of new data and regularizer terms

- Hyperparameters weight relative importance of the different terms.



Example Regularizer terms:

L1 norm:
Minimizes total number of bright pixels

Se1 = —% Z 1|

TV: prefers piecewise flat patches and sparse image
gradients

1/2

Sty = —% Z Z {(Il—{—l,m — Iz,m)2 + (L1, m+1 — Il,m)ﬂ
l m




RML iImaging:
we can use robust closure data dir

Bispec

+ Cl Phase
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RML iImaging:
we can use robust closure data

Bispec

Amp
+ Cl Phase

Cl Amp
+ Cl Phase

Closure-
Only
Methods

Log Cl Amp
+ Cl Phase
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Image Credit: Chael+ 2018a
Simulation Credit: Roman Gold




RML Imaging software developed for the EHT

eht-imaging: Chael +

|

Docs » ehtim (eht-imaging) View page source

ehtim (eht-imaging)

Python modules for simulating and manipulating VLBI data and producing images with regularized
maximum likelihood methods. This version is an early release so please submit a pull request or
email achael@cfa.harvard.edu if you have trouble or need help for your application.

The package contains several primary classes for loading, simulating, and manipulating VLBI data.
The main classes are the 1mage , Array , and obsdata , which provide tools for manipulating images,
simulating interferometric data from images, and plotting and analyzing these data. movie and vex
provide tools for producing time-variable simulated data and observing with real VLBI tracks from
.vex files. imager is a generic imager class that can produce images from data sets in various

polarizationsusing various data terms and regularizers.

This is a pre-release of ehtim. If you have a problem please submit a pull request on the git
repository and/or email achael@cfa.harvard.edu

Installation

Download the latest version from the GitHub repository, change to the main directory and run:

https://github.com/achael/eht-imaging

SMILI: Akiyama+

A SMILI

1. Installation

. Tutorial and Example Scripts

. Developer Team and Related Links

. Acknowledgement

7. smili pac

Docs » SMILI © Edit on GitHub

SMILI

Sparse Modeling Imaging Library for Interferometry

This website is the documentation for SMILI. SMILI is a python-interfaced library for
interferometric imaging using sparse sampling techniques. SMILI is mainly designed for very long
baseline interferometry, and has been under the active development primarily for the Event
Horizon Telescope.

This documentation describes its basic usage with some example data sets. However, SMILI has yet
been actively and dynamically developed for many new topics and challenges of the EHT. The
documentation is not perfect and sometimes outdated due to dynamical changes in the data
structure.

Please contact to Kazu Akiyama at NRAQO/MIT Haystack Observatory if you have any questions

about this library. You may contact with following other core developers, too.

« Kazu Akiyama (The Main Developer) at NRAO/MIT Haystack Observatory
« Fumie Tazaki (Developer) (Japanese Only) at NAQJ

« Shiro Ikeda (Developer) at the Institute of Statistical Mathematics

+ Kotaro Moriyama (Developer) at NAOJ/MIT Haystack Observatory

https: //github.com /astrosmili /smili



https://github.com/achael/eht-imaging
https://github.com/astrosmili/smili

RML Imaging software developed for the EHT
-- but with wide applicability

eht-im

eht-imaging

500 mas
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ALMA Partnership+ 2015, Chael+ 2018
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https://github.com/achael/eht-imaging
https://github.com/astrosmili/smili

An example eht-imaging script

1.) First we define our objective function using

an observation, data term, and regularizer weights.

(We also choose the initial image,
prior image (if used), maximum number of iterations,
systematic noise to add to the error budget ....)

2.) Imaging is usually done in rounds followed by
blurring the result and restarting from the blurred
image. Blurring and restarting helps us escape

local minima.
(Sometimes thresholding is also helpful to remove
noisy off-source flux)

3.) We often self-calibrate to a result obtained

from closure quantities and then continue imaging -

incorporating complex visibilities into the fit.

# Define the imager with an observation, initial gaussian, and data & regularizer

imgr = eh.imager.Imager(observation, initial_gaussian, prior_im=initial_gaussian,
data_term={'amp':10, 'cphase':100, 'logcamp':100},
reg_term={'flux':10,'cm':106,'11':100, 'tv2':10},
maxit=500, systematic_noise=.1)

# Imaging, blurring, and re-imaging function for convergence
def converge(imgr):|
for repeat in range(maj_cycles):
imgr.init_next = imgr.out_last().blur_circ(res)
imgr.make_image_I(show_updates=False)

for repeat2 in range(min_cycles):
imgr.init_next = imgr.out_last()
imgr.make_image_I(show_updates=False)

return imgr

imgr = converge(imgr)
result = imgr.out_last()

# Self calibrate to the previous model (phase-only)
observation_selfcal = eh.self_cal.self_cal(observation, result, method='phase')

# Make an image -- now with complex visibilities
imgr.obs_next = observation_selfcal

imgr.dat_term_next = {'vis':10, 'cphase':100, 'logcamp':100},
imgr = converge(imgr)

result = imgr.out_last()

# Self calibrate to the previous model (amplitude and phase)

weights

observation_selfcal = eh.self_cal.self_cal(observation_selfcal, result, method='both')

# Make an image -- now primarily with complex visibilities
imgr.obs_next = observation_selfcal

imgr.dat_term_next = {'vis':100, 'cphase':10, 'logcamp':10},
imgr = converge(imgr)

final_result = imgr.out_last()

# Final image
im_out = imgr.out_last()

Code: https://github.com/achael/eht-imaging -- see examples folder!

Documentation: https://achael.github.io /eht-imaging /



https://github.com/achael/eht-imaging
https://github.com/achael/eht-imaging
https://achael.github.io/eht-imaging/

Pros of Regularized Maximum Likelihood:

1. Forward modelling allows for flexibility in data terms and regularizers used. The framework allows
for easy experimentation with new methods.

2. The fundamental image representation is continuous: resolution of structure at ¥z to ¥ the beam size
IS possible

3. Easily scriptable: possible to run jobs exploring a huge range of image parameter space

Cons of Regularized Maximum Likelihood:

1. Convergence depends on having initial conditions well adapted to the source
-- Easy for inexperienced imagers to fall into local minima with ghost images.

2. Slower: does not scale trivially to large datasets or images, especially when using closure
guantities.

3. Non-Gaussian statistics and covariance among measurements are not yet implemented in our log —
likelihoods (though they are coming!)



Validating an Image



Two Classes of Imaging Algorithms

Self Calibration

5\0“ “Unverse Modeling
(CLEAN + Self-Calibration)

Systematic
Thermal Errors
Nojse
Phase Amp
Error
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Xiap = argmax,, [log p(y’X) + log p(x)]

Forward Modeling
(Regularized Maximum Likelihood)



Imaging Parameter Surveys

DIFMAP eht-imaging SMILI
(CLEAN + Self Calibration) (Regularized Max Likelihood) (Regularized Max Likelihood)
Compact Flux Compact Flux Compact Flux
Stop Condition Initial Gaussian Size L1 Soft Mask Size
Weighting on ALMA Systematic Error Systematic Error
Mask Size Regularizes Regularizes
Data Weights MEM TV
TV TSV
TSV L1
L1




Testing thousands of
parameter sets per method
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Look for consistent features from different methods
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Image Credit: EHT Collaboration 2019 (Paper V)



Look for consistent features from different methods
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Validating with Cal
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Validating by Omitting stations

Full Array w/o Chile w/o SMT w/o LMT w /o Hawaii

Closure Only

~

Our images should not be too sensitive to the loss or
miscalibration of any one telescope
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Imaging Extensions



Extension 1: Polarization

Counter Jet EHT 2017/
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Extension 2: Multi-frequency #eo-ua(:
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Extension 3: Dynamics

Static
Closure Phase
ALMA-SPT-PV Triangle
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Summary

* VLBl data is incompletely sampled —imaging algorithms are required to
infer a best-guess image from the observed data

 Two important classes of imaging algorithms are:

 CLEAN —fast, iterative, models image as point source
e RML—works on closure quantities, flexible

* Imaging is path-dependent and requires careful validation

* Many open areas to explore in designing imaging techniques for EHT
and other VLBI arrays!



Next Steps

Fill out the webinar survey at
http: //bit.ly /BHPIRE-Imaging

Get started with eht-imaging at
https://github.com/achael/eht-imaging

Play with real M87 data and EHTC imaging scripts at
https: / /github.com /eventhorizontelescope /2019-DO1-02



http://bit.ly/BHPIRE-Imaging
https://github.com/achael/eht-imaging
https://github.com/eventhorizontelescope/2019-D01-02

Image Credits: NRAO (VLA),
Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm),
EHT (1.3 mm)

40pas ~ 500 AU

0.01 pc ~ O0.Tmas




