Towards Understanding Black Hole Accretion and Jet Launching: Linking Simulations to EHT Images

170 µas

Event Horizon Telescope

The EHT Collaboration

Outline

1. Interpreting the EHT image with GRMHD Simulations

2. Going Further

- Polarization
- Larger scales
- Dynamics & Sgr A* Flares
- Plasma Physics

1. How do we interpret the EHT M87 Image?

Image Credits: HST(Optical), NRAO (VLA), Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm), EHT (1.3 mm)

At the heart of M87...

- Supermassive black hole with mass $Mpprox 6 imes 10^9 M_{\odot}$
- Thick accretion flow of hot, ionized plasma ($T\gtrsim 10^{10}\,{
 m K}$)

- Launches a powerful relativistic jet ($P_{\rm jet} \ge 10^{42} {\rm ~erg~s^{-1}}$)
 - Extraction of BH spin energy?

Mass: Gebhardt+ 2011, Walsh+ 2013, Jet Power: Reynolds+ 1996, Stawarz+ 2006, de Gasperin+ 2012 Simulations: Dexter+2012, Mościbrodzka+2016, Ryan+ 2018, Chael+ 2019, Davelaar+ 2019 What parameters determine the images we see?

1. Spacetime geometry: M, a-Liberating potential energy heats the plasma. -Extraction of spin energy What parameters determine the images we see?

1. Spacetime geometry: M, a-Liberating potential energy heats the plasma. -Extraction of spin energy

2. (Radiative) Magnetohydrodynamics: \dot{M} , Φ_B

- Does the magnetic field arrest accretion?
- How does the B-field determine the jet power & shape?

SANE vs MAD

• Two accretion states that depend on the accumulated magnetic flux on horizon:

• Blandford-Znajek (1977): Jet is powered by the black hole's angular momentum:

$$P_{
m jet} \propto \Phi_B^2 a^2$$

What parameters determine the images we see?

1. Spacetime geometry: M, a-Liberating potential energy heats the plasma. -Extraction of spin energy

2. (Radiative) Magnetohydrodynamics: \dot{M} , Φ_B

- Does the magnetic field arrest accretion?
- How does the B-field determine the jet power & shape?
- 3. Electron distribution functions: T_e , $n_e(\gamma)$ -Electrons and ions are not in equilibrium in hot flows -What is the electron temperature? -Is there a nonthermal population?

General Relativistic MagnetoHydroDynamics (GRMHD)

General Relativistic Ray Tracing (GRRT)

Solves coupled equations of fluid dynamics and magnetic field in Kerr spacetime Tracks light rays and solves for the emitted radiation

Movie Credits: Aleksander Sądowski, EHT Collaboration 2019 (Paper V)

Validating GRRT codes

Deflection Angle Test

GRMHD Image Tests

Analytic Model Tests

Gold+ EHTC 2020 (in prep)

Validating GRMHD codes

SANE disk test problem.9 codes used different grids, reconstructionschemes, numerical floors, boundary conditions

Porth+ EHTC 2020 1904.04923

Codes differ in turbulent realizations...

... but produce consistent disk and jet profiles

0 0 1 EHT Image Library: ightarrow 43 simulations with different BH spin and accretion state (SANE/MAD) \rightarrow Electron Temperatures determined by Mościbrodzka 2016 "Rhigh" prescription: $\frac{T_i}{T_e} = R_{\text{high}} \frac{\beta^2}{1+\beta^2} + R_{\text{low}} \frac{1}{1+\beta^2} \qquad \beta = p_{\text{fluid}} / p_{\text{mag}}$ ~60k images for comparison to data \rightarrow

Image credit: EHTC, Avery Broderick

Caveat: EHT simulation library has no tilted disks

 All EHT library simulations have disk angular momentum **parallel/antiparallel** to BH spin axis

 In tilted-disk simulations, lensing of the inner disk/jet base can result in vastly different 230 GHz images even though 43 GHz images are similar

Need a library of tilted disk systems!

Chatterjee+20 2002.08386

also: Fragile+07, Dexter+11, McKinney+13, Liska+18, White+19,+20

Fitting Simulations to EHT observations

We fit frames to data by varying the angular size, total flux, and sky position angle

 Since each simulation runs for only a limited time, no single frame is likely to exactly match the observations

• Average Image Scoring: given a distribution of fit statistics to many frames from a given simulation, how likely are we to get a good fit if the underlying simulation ran forever?

Model Selection

• Most models can be made to fit EHT observations alone by tweaking free parameters (mass, PA, total flux density)

• The jet power constraint ($\geq 10^{42}$ erg/sec) rejects all spin 0 models

SANE models with |a| < 0.5 are rejected. Most |a| > 0 MAD models are acceptable.

• In all successful models, jet is driven by extraction of black hole spin energy

Blandford-Znajek (1977): $\,P_{
m jet} \propto \Phi_B^2 a^2$

EHTC+ Paper V, 2019

Ring Asymmetry and Black Hole Spin

It is the **BH angular momentum**, not the **disk angular momentum** that determines the image orientation

BH spin-away (clockwise rotation) models are strongly favored

EHTC+ 2019, Paper V

Where does the emission come from?

In all surviving models emission region is within ~5 gravitational radii of the black hole

Polarization can help distinguish between these scenarios!

EHTC+ 2019, Paper V₁₉

2. Going Further Polarization, Large Scales, Dynamics, Plasma Physics

Polarization: Traces magnetic fields

Toroidal Field: ~SANE like FACE ON ^<u>k</u> FACE ON <<u>k</u> D ħ ΒН ΒH 10 POLARISATION DIRECTION LIGHT BENDING \odot MAGNETIC FIELD DIRECTION B LINE OF SIGHT DIRECTION \odot ĥ (COMING OUT OF THE SCREEN)

Vertical field scenario would be unpolarized without GR!

Vertical field: ~MAD like

Image credit: Alejandra Jiménez-Rosales

Polarization: Faraday Effects

Optical depth to Internal Faraday Rotation:
$$au_{\rm FR} \sim \left(\frac{R}{R_{\rm Sch}}\right) \left(\frac{n_e}{10^6 \,{\rm cm}^{-3}}\right)^{3/2} \left(\frac{\theta_e}{10}\right)^{-2} \left(\frac{\beta}{10}\right)^{-1/2}$$

The amount of internal Faraday rotation depends on emission origin

Broderick & Loeb 2009 Forward jet: LP~10%

Mościbrodzka+ 2017 Counter jet: LP~1%

Polarization: Pattern Trends in the Image Library

• Fourier decomposition of azimuthal polarized flux:

$$\beta_m = \frac{1}{I_{\text{ann}}} \int_{\rho_{\text{min}}}^{\rho_{\text{max}}} \int_{0}^{2\pi} P(\rho, \varphi) e^{-im\varphi} \rho \,\mathrm{d}\varphi \,\mathrm{d}\rho,$$

• *m*=2 mode picks out rotationally symmetric part (equivalent to E & B modes)

Palumbo+ 2020 2004.01751

Polarization: Pattern Trends in the Image Library

 MADs tend to have more power in m=2 mode, prefer toroidal or twisty EVPA patterns:

• Azimuthal decomposition of polarized flux can help to distinguish between accretion states

Palumbo+ 2020 2004.01751

Connecting to Larger Scales: Radiative MAD jet simulations

Wide apparent opening angles get **larger** with increasing frequency

Chael+ 2019: 1810.01983

Connecting to Larger Scales: Radiative MAD jet simulations at 43 GHz

Apparent opening angle at 43 GHz:

(Walker+ 2018)

The mechanical jet power in R17 is in the measured range of 10^{43} – 10^{44} erg/s!

Connecting to Larger Scales: ngEHT will illuminate the BH-jet connection

The current EHT lacks short baselines, which are necessary

to detect extended structure.

With more dishes added to the array, we will be able to

observe the BH-jet connection near the horizon

Image Credit: Michael Johnson EHT Astro2020 APC White Paper (Blackburn, Doeleman+; 1909.01411)

R17

Dynamic accretion flow
 → Observing M87 in future years (or using past data!) can help constrain flow dynamics/composition

Chael+ 2019: 1810.01983

Mass from GRAVITY Collab.+ 2018

Time variability: Sgr A* Flares

 Intra-day 1.3 mm variability in Sgr A* on minute-hour timescales makes imaging very hard!

• GRAVITY NIR Interferometry: flares rotate near the horizon, $R\sim 3-5\,R_{
m Sch}\,,\,v\sim 0.2-0.3c$

Marrone+2008, Dexter+2014, Fazio+ 2018, GRAVITY Collab+ 2018b

Time variability: Tracking coherent flares in M87 & Sgr A*

 In M87, flares emitted in a BH driven jet have more complex & longer-lived signatures than those emitted in a disk wind

 In Sgr A*, repeated observations might catch flares at different initial radii and probe different radial slices of spacetime

→ could enable a precise spin measurement if flares can be associated to orbiting compact emission regions.

> Tiede+ 2020: 2002.05735 Jeter+ 2020: 1804.05861

Time variability: Thermal simulations can't produce strong flares

Chael+ 2018, 1804.06416

Plasma physics: A major uncertainty & opportunity!

• Inefficient Coulomb coupling between ions and electrons:

 $T_{\rm e} \neq T_{\rm i}$

- Generally expect electrons to be cooler than ions, but if electrons are heated much more, they can remain hotter.
- The electron temperature is sensitive to microscopic plasma processes, and electrons may not completey thermalize!

Huge scale separation in hot accretion flows

Plasma physics: Adding electron temperatures to GRMHD Simulations GRMHD GRRT

Evolves a **coupled** electron-ion fluid and magnetic field

Movie Credits: Aleksander Sądowski, EHT Collaboration 2019 (Paper V)

Plasma physics: Adding electron temperatures to GRMHD Simulations

Hot Disk

 $\frac{T_e}{T_i} = 0.2$

Mościbrodzka+ 2014

Plasma physics: Electron & Ion Heating in radiative simulations

• Include electrons, ions, and photons as additional populations in simulations:

- Emitting electrons cool from radiation and gain energy in microscopic plasma heating

 M87's accretion rate is high enough that radiative feedback is important! (Ryan+ 2018, EHTC+ 2019)

• **Sub-grid plasma physics** must be used to determine what fraction of the dissipation goes into the electrons.

Plasma physics: Exploring different sub-grid models for electron heating

- What dissipative mechanism truncates the turbulent cascade at small scales?
- Options: magnetic reconnection (e.g. Rowan 2017), Landau damping (e.g. Howes+ 2010), Fermi-type acceleration (e.g. Zhdankin+ 2019)
- Radiative simulations allow us to incorporate different heating models selfconsistently, but there is a large parameter space of heating models, but

43 GHz images of Sgr A* Simulations

Heating from sub-grid Landau damping – hotter electrons in the jet

Heating from sub-grid reconnection -- hotter electrons in the disk

Plasma physics: Simulating Sgr A* Flares by evolving the EDF

Chael+ 2017

Plasma physics: Reconnection events in resistive GRMHD

Ripperda+ 2020 2003.04330

The goal: Understanding accretion flows & jets at all scales

Image Credit: Dodds-Eden+ (2009) Also: Flacke & Markoff (2000), Yuan+ (2003), Genzel+ (2010)

Takeaways

- GRMHD simulations are a powerful tool for connecting EHT images to plasma flows around black holes
- Polarization will be particularly powerful to disentangle different accretion scenarios
- Extended jet simulations can connect EHT images on horizon scales to the extended jet on large (up to ~pc) scales: EHT upgrades will directly reveal the BH / jet connection.
- Strong Sgr A* flares require emitting populations not captured in thermal GRMHD → more EHT data will mean opportunities to explore & constrain plasma microphysics

Thank you!

