The Black Hole and Jet in M87: Linking Simulations and VLBI images

Andrew Chael

NHFP Einstein Fellow, Princeton University

Waterloo, October 2, 2019

PRINCETON CENTER FOR

HARVARD & SMITHSONIAN

Event Horizon Telescope

The Black Hole and Jet in M87: Linking Simulations and VLBI images

Andrew Chael

NHFP Einstein Fellow, Princeton University

Waterloo, October 2, 2019

Work with Ramesh Narayan, Michael Johnson, Katie Bouman, Shep Doeleman, Michael Rowan, and the entire EHT collaboration

arXiv: 1803.07088, 1810.01983 EHTC+ 2019, Papers I-VI (ApJL 875) my thesis! <u>https://achael.github.io/</u>pages/pubs

The EHT Collaboration

Image Credits: HST(Optical), NRAO (VLA), Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm), EHT (1.3 mm)

At the core of M87

• Thick accretion flow of hot, ionized plasma ($T\gtrsim 10^{10}\,{\rm K}$)

Launches the powerful relativistic jet
 (≥ 10⁴² erg/sec)

 Strong and turbulent magnetic fields? Extraction of BH spin energy via the Blandford-Znajek process?

What does a black hole look like close up?

 $r_{\rm shadow} = \sqrt{27} G M / c^2$

The Event Horizon Telescope

Image Credit: EHT Collaboration 2019 (Paper II)

Image Credits: HST(Optical), NRAO (VLA), Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm), EHT (1.3 mm)

Video Credit: Michael Johnson

Outline

I. Imaging M87

- Regularized Maximum Likelihood
- The eht-imaging library
- EHT Images of M87 and the BH mass
- II. Simulating M87
- Two-temperature simulations in KORAL
- MAD Simulations of M87
- Connecting simulations to images at multiple scales
- III. Next Steps
- Polarization
- Dynamics and Nonthermal electrons
- Expanding the EHT

EHT 2017

Photo Credits: EHT Collaboration 2019 (Paper III) ALMA, Sven Dornbusch, Junhan Kim, Helge Rottmann, David Sanchez, Daniel Michalik, Jonathan Weintroub, William Montgomerie, Tom Folkers, ESO, IRAM

The EHT data path

Animation credit: Lindy Blackburn

Very Long Baseline Interferometry (VLBI)

Very Long Baseline Interferometry (VLBI)

Traditional Approach: CLEAN

Station-based errors

+ Thermal noise (subdominant)

Closure Quantities

• Visibilities are corrupted by station-based gain errors

 Closure phases are invariant to station-based phase errors and Closure amplitudes are invariant to amplitude gains

"Bayesian" Imaging

Image Credit: Katie Bouman Simulation Credit: Avery Broderick

"Bayesian" Imaging

Image Credit: Katie Bouman Simulation Credit: Avery Broderick

Regularized Maximum Likelihood

Image Credit: Katie Bouman Simulation Credit: Avery Broderick

Feature-driven Image Regularizers

Sparsity:

Favors the image to be mostly empty space

Smoothness:

Favors an image that varies slowly over small spatial scales

Maximum Entropy:

Favors compatibility with a specified "prior" image

The eht-imaging software library

achael /	eht-imaging			•	O Unwatch ▾ 💈	203 🖈 Star	4,790 % Fork 431	
<> Code	! Issues 6) Pull requests 12	Projects 0	🗏 Wiki 🔢 Insights	s 🌣 Settings	ŝ		
maging, and Manage topics	alysis, and simu	lation software for	radio interferometry	https://achael.githul	o.io/eht-imagir	ng/	Edit	
T,604 ر	commits	ំ / 7 branches	𝒫 6 releases	🛷 1 environmen	t 🚨 9 co	ontributors	മ് GPL-3.0	
Branch: maste	r ▼ New pull re	quest		Creat	e new file Uplo	ad files Find Find	File Clone or download 🗸	
C achael v1	.1.1					□ 1 Latest c	commit 7b8b8d5 17 days ago	
arrays		added requ	uirements.txt				4 months ago	
📄 data		overwrite o	old master				a year ago	
docs		modified s		4 months ago				
ehtim		minor bug	fix in parloop		17 days ago			
examples	i	fixed obsda	ata.save_txt in polrep		6 months ago			
		added row	an and howes				6 months ago	
models								
models scripts		added gen	eric scripts gendata.py i	maging.py			3 months ago	

- Python software to image, analyze, and simulate interferometric data
- Flexible framework for developing new tools – e.g. polarimetric imaging, dynamical imaging.
- Used in 18 published papers (including all 5/6 EHT result papers)

https://github.com/achael/eht-imaging

Closure imaging in interferometry

Image Credit: Chael+ 2018a Simulation Credit: Roman Gold RML Imaging has wide applicability!

M87 jet at 7mm with the VLBA

Image Credit: Chael+ 2018a, Walker+ 2018 RML Imaging has wide applicability!

Image Credit: Chael+ 2018a, ALMA Partnership+ 2015

Imaging M87 with the EHT

EXIT

Intuttett

8000.0

0.0006

BHI, July 2018

M87 MJD 57854 227.07 GHz

 $70 \,\mu$ -arcseconds

Two stages of imaging M87

Stage 1: Blind Imaging

Stage 2: Parameter Surveys & Synthetic data tests

eht-imaging (37500 Param. Combinations; 1572 in Top Set)

Compact Flux (Jy)	0.4 12%	0.5 19%	0.6 24%	0.7 23%	0.8 22%	
Init./MEM FWHM (µas)	40 58%	50 42%	60 0%			
Systematic Error	0% 26%	1% 27%	2% 26%	5% 20%		
Regularizer:	0	1	10	10 ²	10 ³	
MEM	0%	0%	80%	<u>92%</u>	()00	
TV	31%	35%	33%	0%	0%	
TSV	31%	34%	32%	3%	0%	
ℓ_1	23%	24%	24%	22%	7%	

Image Credit: EHT Collaboration 2019 (Paper IV)

Three pipelines, four days

M87 Ring Properties

- Diameter $d \approx 41 \,\mu as$ is consistent across time and method
- Ring width is resolution dependent, and is at best an upper limit.
- Orientation angle shows tentative $\approx 20^{\circ}$ CCW shift from April 5 11

Image Credit: EHT Collaboration 2019 (Paper V)

Weighing a black hole

- The mass is proportional to the distance and diameter: $M = \frac{c^2 D}{G} \frac{d}{\alpha}$
- α can be biased by resolution and structure \rightarrow Calibrate α with a library of simulation images

• After calibration, eht-imaging alone gives $M = (6.47 \pm 0.62) \times 10^9 M_{\odot}$

Weighing a black hole

Image Credit: EHT Collaboration 2019 (Paper VI)

$M = (6.5 \pm 0.7) \times 10^9 M_{\odot}$ $R_{\rm Sch} = 128 \, {\rm AU}$

Outline

- I. Imaging M87
 - Regularized Maximum Likelihood
 - The eht-imaging library
 - EHT Images of M87 and the BH mass
 - II. Simulating M87
 - Two-temperature simulations in KORAL
 - MAD Simulations of M87
 - Connecting simulations to images at multiple scales
 - III. Next Steps
 - Polarization
 - Dynamics and Nonthermal electrons
 - Expanding the EHT

General Relativistic MagnetoHydroDynamics (GRMHD)

General Relativistic Ray Tracing

Solves coupled equations of fluid dynamics and magnetic field in a black hole spacetime

Tracks light rays and solves for the emitted radiation

Movie Credits: Aleksander Sądowski, EHT Collaboration 2019 (Paper V)

Simulations: What does the EHT see?

Spacetime geometry

 The gravity and shadow of the black hole.

2. Fluid dynamics -How is stuff moving? Jet/disk/outflow?
SANE vs MAD

• Two accretion states according to accumulated magnetic flux on horizon:

Simulations: What does the EHT see?

1. Spacetime geometry

-The gravity and shadow of the black hole.

2. Fluid dynamics-How is stuff moving? Jet/disk/outflow?

3. Electron (non)thermodynamics.-Where are the emitting electrons?-What is their distribution function?

M87 and Sgr A* are **Two-Temperature** Flows

• Inefficient Coulomb coupling between ions and electrons.

$$T_{\rm e} \neq T_{\rm i} \neq T_{\rm gas}$$

• Generally expect electrons to be **cooler** than ions.

• But if electrons are **heated** much more, they can remain hotter.

Setting T_e in post-processing Different Choices \rightarrow Different Images!

 $\lambda = 1.3$ mm

Cool Disk $\frac{T_e}{T_i} = 0.04$

0000 \bigcirc \bigcirc \odot O 000 0 6 0 0 \odot ۲ C \bigcirc \bigcirc O EHTC+ 2019, Paper V and VI **Image Library** of > 60,000 simulation snapshots from 43 simulations using different post-processing settings O 0 0 6 0 0 O C \odot 0 ۲ Image credit: EHTC,

Avery Broderick

Lessons from EHTC+ 2019 Paper V

• Most models can be made to fit EHT observations alone by tweaking free parameters (mass, orientation, electron temperature...)

- The jet power constraint (≥ 10⁴² erg/sec) rejects all spin 0 models SANE models with |a| < 0.5 are rejected. Most |a| > 0 MAD models are acceptable.
- Reason to suspect the system may be MAD, and self-consistent electron temperatures from simulations may be important

-Can we learn more from also comparing to lower frequency images?

Two-Temperature GRRMHD Simulations

- Using the code KORAL: (Sądowski+ 2013, 2015, 2017, Chael+ 2017)
- Include radiative feedback on gas energy and momentum (through M1 closure)
- Electron and ion energy densities are evolved via the covariant 1st law of thermodynamics:

$$dU = -PdV + TdS$$

$$Adiabatic$$

$$Adiabatic$$

$$Compression and$$

$$Expansion$$

$$AU = -PdV + TdS$$

$$Entropy Generated Through Dissipation And lost through radiative cooling$$

Electron & Ion Heating

 The total dissipative heating in the simulation is internal energy of the total gas minus the energy of the components evolved adiabatically.

• Sub-grid physics must be used to determine what fraction of the dissipation goes into the electrons.

Sub-grid Heating Prescriptions

Turbulent Dissipation (Howes 2010)

- Non-relativistic physics (Landau Damping)
- Predominantly heats electrons when magnetic pressure is high, and vice versa

Magnetic Reconnection (Rowan+ 2017)

- Based on PIC simulations of trans-relativistic reconnection.
- Always puts more heat into ions
- Constant nonzero δ_e at low magnetization.

Image Credit: Chael+ 2018b see also: Kawazura+ 2018 (turbulent damping). Werner+ 2018 (reconnection)

Previous simulations: *Mościbrodzka+ 2016, Ryan+ 2018*

- Both are SANE Simulations with weak magnetic flux.
- Ryan 2018+ used a two-temperature method with the turbulent cascade prescription.
- Jet powers relatively weak, jet opening angle is narrow.

Image Credit: Ryan+ 2018, Moscibrodzka+ 2016 Also: Dexter+ 2012,, 2017

 $P_{
m jet~is~too~small!}$ $500~\mu{
m as}$

Reconnection Heating

 $P_{
m jet}$ in the measured range!

Electron Heating + Radiation → Jet Dynamics

Turbulent heating produces too much radiation at the jet base, which saps the jet power

Electron Heating + Radiation \rightarrow Dynamics!

M87 Jets at millimeter wavelengths

Turbulent Heating

Heating

Inclination angle (down from pole)

 17°

Disk/Jet rotation sense

Wide apparent opening angles get larger with increasing frequency

Image Credit: Chael+ 2019

43 GHz images – comparison with VLBI Walker+ 2018

Image Credit: Chael+ 2019 VLBA Image Credit: Chael+ 2018a Original VLBA data: Walker+ 2018

M87 Core-Shift

Agreement with measured core shift up to cm wavelengths.

Hada+ 2011

M87 SED

Data from Prieto+16 New points (cyan and magenta) from Akiyama+15, Doeleman+12, Walker+18, Kim+18, and MOJAVE

230 GHz Images

Turbulent Heating

- 04° - 68.65

344-1 - 63

Reconnection Heating

230 GHz Images

Turbulent Heating

Image Credit: Chael+ 2019

A word of catuion: $\sigma_{\rm i}$ cut

- Density floors are imposed in the simulation inner jet where $\sigma_i \geq 100$
- We don't trust radiation from these regions, so when raytracing we only include regions where $\sigma_{\rm i} \leq 25$
- Spectra and images at frequencies ≥ 230 GHz depend strongly on the choice of cut!

230 GHz images – dependence on σ_i cut

The image becomes more compact & counterjet dominated when we include more high-magnetization emission from the jet base!

The Black Hole in M87: Simulations and Images

EHT 2017 image

Simulated image from GRMHD model

EHT 2017 visibility amplitudes and model amplitudes

Outline

- I. Imaging M87
 - Regularized Maximum Likelihood
 - The eht-imaging library
 - EHT Images of M87 and the BH mass

- Two-temperature simulations in KORAL
- MAD Simulations of M87
- Connecting simulations to images at multiple scales
- III. Next Steps
- Polarization
- Dynamics and Nonthermal electrons
- Expanding the EHT

Next Steps: Polarization!

Polarization and e-heating

SANE + Turbulent cascade

-LP < 1%

high internal RM does not follow lambda²
(Moscibrodzka & Falcke 2013, Ressler+2015,2017)

MAD + Reconnection

-LP ~ 2-10%

-low RM is mostly external from forward jet– follows lambda² (Chael+2018)

Image credit: Jason Dexter

Time Variability?

M87

April 5 April 11 50 μ as $6 \,\mathrm{day} = 16 \,t_{\mathrm{g}}$ Simulation

Image Credit: EHT Collaboration 2019 (Paper IV), Chael+ 2019

Reconnection Heating

Next steps: Sgr A* Dynamics

Intra-day 1.3 mm variability in Sgr A* on minute-hour timescales makes imaging hard!

Large amplitude NIR and X-ray variability/flares cannot be produced by thermal electrons in GRMHD – require nonthermal emission?

> Marrone+2008, Dexter+2014, Fazio+ 2018

Simulating Flares: Evolving nonthermal electrons

Chael+ 2017

Understanding LLAGN down to horizon scales: Sgr A*'s SED and Variability

Image Credit: Dodds-Eden+ (2009) Also: Flacke & Markoff (2000), Yuan+ (2003), Genzel+ (2010)

Next Steps: EHT Upgrades

The current EHT lacks <u>short</u> baselines, which are necessary to detect extended structure.

Idea: add many more small, ~6m dishes to the array

Slide Credit: Michael Johnson See: EHT Ground Astro2020 APC White Paper (Blackburn, Doeleman+; arXiv:1909.01411)

Next Steps: EHT Upgrades

The current EHT lacks <u>short</u> baselines, which are necessary to detect extended structure.

Idea: add many more small, ~6m dishes to the array

Slide Credit: Michael Johnson See: EHT Ground Astro2020 APC White Paper (Blackburn, Doeleman+; arXiv:1909.01411)

Future: Space VLBI with the EHT

	LEO	High MEO / GEO	Higher Orbits
Resolution	Not much better than ground-only	Several times ground-only	Higher
Gaps in (u,v) Coverage	Negligible	Manageable	Extreme
Speed of (u,v) Coverage	Fast	~Daily	Slow

See: EHT Space Astro2020 APC White Papers

- Haworth, Johnson+; arXiv:1909.01405
- Pesce+; arXiv:1909.01408

Future: Extremely LBI measures the photon ring precisely

Simulated visibility amplitudes – ringing from narrow structures on extremely long baselines!

> Johnson+ 2019, arXiv: 1907.04329

Future: Extremely LBI measures the photon ring precisely

Longer and longer baselines measure narrower and narrower subrings – each from a different number of photon windings!

Johnson+ 2019, arXiv: 1907.04329
Outline

- I. Imaging M87
 - Regularized Maximum Likelihood
 - The eht-imaging library
 - EHT Images of M87 and the BH mass

- Two-temperature simulations in KORAL
- MAD Simulations of M87
- Connecting simulations to images at multiple scales

- Polarization
- Dynamics and Nonthermal electrons
- Expanding the EHT

Thank you!

Work with Ramesh Narayan, Michael Johnson, Katie Bouman, Shep Doeleman, Michael Rowan, and the entire EHT collaboration

arXiv: 1803.07088, 1810.01983 EHTC+ 2019, Papers I-VI (ApJL 875) my thesis! <u>https://achael.github.io/</u>pages/pubs