The Black Hole and Jet in M87: Connecting Simulations and VLBI images

Andrew Chael

(he/him/his)

NHFP Einstein Fellow Princeton University

October 24, 2019

170 µas

Event Horizon Telescope

The EHT Collaboration

In particular: Ramesh Narayan, Michael Johnson, Katie Bouman, Shep Doeleman, Michael Rowan, Lorenzo Sironi, Kazu Akiyama, and Sara Issaoun

Image Credits: HST(Optical), NRAO (VLA), Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm), EHT (1.3 mm)

At the heart of M87...

• Thick accretion flow of hot, ionized plasma ($T\gtrsim 10^{10}\,{\rm K}$)

Launches the powerful relativistic jet
 (≥ 10⁴² erg/sec)

 Strong and turbulent magnetic fields?
 Extraction of BH spin energy via the Blandford-Znajek process?

The Event Horizon Telescope

Image Credit: EHT Collaboration 2019 (Paper II)

Image Credits: HST(Optical), NRAO (VLA), Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm), EHT (1.3 mm)

Understanding LLAGN down to horizon scales: Sgr A*'s SED

Image Credit: Dodds-Eden+ (2009) Also: Flacke & Markoff (2000), Yuan+ (2003), Genzel+ (2010)

General Relativistic MagnetoHydroDynamics (GRMHD)

General Relativistic Ray Tracing

Solves coupled equations of fluid dynamics and magnetic field in a black hole spacetime

Tracks light rays and solves for the emitted radiation

Movie Credits: Aleksander Sądowski, EHT Collaboration 2019 (Paper V)

The Black Hole in M87: Simulations and Images

EHT 2017 image

Simulated image from GRMHD model

EHT 2017 visibility amplitudes and model amplitudes

What parameters influence images from simulations?

1. Spacetime geometry: M, a-Liberating potential energy heats the plasma. -Photons follow null geodesics.

2. (Radiative) Magnetohydrodynamics: \dot{M} , Φ_B

- Does the magnetic field arrest accretion?
- How does the B-field determine the jet power & shape?

SANE vs MAD

• Two accretion states that depend on the accumulated magnetic flux on horizon:

• Blandford-Znajek (1977): Jet is powered by the black hole's angular momentum:

$$P_{
m jet} \propto \Phi_B^2 a^2$$

What parameters influence images from simulations?

1. Spacetime geometry: M, a-Liberating potential energy heats the plasma. -Photons follow null geodesics.

2. (Radiative) Magnetohydrodynamics: \dot{M} , Φ_B

- Does the magnetic field arrest accretion?
- How does the B-field determine the jet power & shape?

3. Electron (non)thermodynamics: T_e , $n_e(\gamma)$ -What is the electron temperature? -What is their distribution function?

0 0 0 \mathbf{O} \bigcirc 0 C 0 (\bigcirc (EHTC+ 2019, Paper V **Image Library** of > 60,000 simulation snapshots from 43 simulations using different electron temperature prescriptions 0 0 Image credit: EHTC, Avery Broderick

EHTC+ 2019 Results

- Most models can be made to fit EHT observations alone by tweaking free parameters (mass, orientation, electron temperature...)
- The jet power constraint (≥ 10⁴² erg/sec) rejects all spin 0 models SANE models with |a| < 0.5 are rejected. Most |a| > 0 MAD models are acceptable.

EHTC+ 2019 Results

- Most models can be made to fit EHT observations alone by tweaking free parameters (mass, orientation, electron temperature...)
- The jet power constraint (≥ 10⁴² erg/sec) rejects all spin 0 models SANE models with |a| < 0.5 are rejected. Most |a| > 0 MAD models are acceptable.

 Reason to suspect the system may be MAD, and self-consistent electron temperatures from simulations may be important

-Can we learn more from also comparing to lower frequency images?

SANE simulations of M87: Ryan+ 2018 / Mościbrodzka+ 2016

- Radiative cooling determines the disk temperature.
- Jet powers too weak: $P_{\rm jet,M87} = 10^{43} 10^{44} \, {\rm erg \, s^{-1}}$
- Jet opening angle is **too narrow:** $\theta_{\rm jet, 43\,GHz} \approx 55^{\circ}$

Two-Temperature GRRMHD Simulations

- Using the GRRMHD code KORAL: (Sądowski+ 2013, 2015, 2017, Chael+ 2017)
- Includes radiative feedback on gas energy-momentum.
 -- M87's accretion rate is high enough that radiative feedback is important (Ryan+ 2018, EHTC+ 2019)
- Electron and ion energy densities are evolved via the covariant 1st law of thermodynamics:
 Radiative Cooling

 $T_{e} (ns_{e}u^{\mu})_{;\mu} = \underbrace{\delta_{e}q^{v} + q^{C} - \hat{G}^{0}}_{\text{Coulomb coupling:}} \\ T_{i} (ns_{i}u^{\mu})_{;\mu} = \underbrace{(1 - \delta_{e})q^{v} - q^{C}}_{\text{Dissipation}} \\ \text{Adiabatic}_{\text{Compression/}} \\ \text{Expansion}$

Electron & Ion Heating

 The total dissipative heating in the simulation is internal energy of the total gas minus the energy of the components evolved adiabatically.

• Sub-grid physics must be used to determine what fraction of the dissipation goes into the electrons.

Sub-grid Heating Prescriptions

Turbulent Dissipation (Howes 2010)

- Non-relativistic physics (Landau Damping)
- Predominantly heats electrons when magnetic pressure is high, and vice versa

Magnetic Reconnection (Rowan+ 2017)

- Based on PIC simulations of trans-relativistic reconnection.
- Always puts more heat into ions
- Constant nonzero δ_e at low magnetization.

Image Credit: Chael+ 2018b see also: Kawazura+ 2018 (turbulent damping). Werner+ 2018 (reconnection)

Two-temperature simulations of Sgr A* Image structure with frequency

Turbulent heating makes lower frequency images jet dominated, **exceeding** measurements of anisotropy **when not viewed face-on** (Johnson+ 2018, Issaoun+ 2018)

<u>43 GHz</u>

Sagittarius A* $M_{BH} = (4.10 \pm 0.03) \times 10^6 M_{\odot}$

Mass from GRAVITY Collab. + 2018

Two-temperature MAD simulations of M87

- Both simulations are MAD.
- Density is scaled to match 0.98 Jy at 230 GHz.
- The mechanical jet power in R17 is in the measured range of 10⁴³-10⁴⁴ erg/s.

230 GHz Images

Turbulent Heating

- 04° - 68.65

304-1 - 53

Reconnection Heating

Two-temperature MAD simulations of M87 43 GHz jets

0.0 yr Turbulent Heating

 $P_{
m jet~is~too~small!}$ $500~\mu{
m as}$

Reconnection Heating

 $P_{
m jet}$ in the measured range!

43 GHz images – comparison with VLBI Walker+ 2018

Image Credit: Chael+ 2019 VLBA Image Credit: Chael+ 2018a Original VLBA data: Walker+ 2018

M87 Core-Shift

Agreement with measured core shift up to cm wavelengths.

Hada+ 2011

M87 SED

Data from Prieto+16 New points (cyan and magenta) from Akiyama+15, Doeleman+12, Walker+18, Kim+18, and MOJAVE

Electron Heating + Radiation → Jet Dynamics

Turbulent heating produces too much radiation at the jet base, which saps the jet power

Electron Heating + Radiation \rightarrow Dynamics!

Major uncertainty in simulations: σ_i cut

- Density floors are imposed in the simulation inner jet where $\sigma_i \geq 100$
- We don't trust radiation from these regions, so when raytracing we only include regions where $\sigma_i \leq 25$
- Spectra and images at frequencies ≥230 GHz depend strongly on the choice of cut!

Next Steps

Polarization and e-heating

SANE + Turbulent cascade

-LP < 1%

- Turbulent E-field vector pattern

 high internal RM from hot disk does not follow lambda² (Moscibrodzka & Falcke 2013, Ressler+2015,2017)

MAD + Reconnection

-LP ~ 2-10%

-More coherent E-field vector pattern

-low RM is mostly external from forward jet– follows lambda² (Chael+2018)

Image credit: Jason Dexter

Next Steps: Enhancing EHT's dynamic range

The current EHT lacks <u>short</u> baselines, which are necessary to detect extended structure.

Idea: add many more small, ~6m dishes to the array

Slide Credit: Michael Johnson See: EHT Ground Astro2020 APC White Paper (Blackburn, Doeleman+; arXiv:1909.01411)

Takeaways

- Global simulations can connect EHT images on horizon scales to the extended jet on ~pc scales.
- Both dissipation and radiation are important in determining the electron temperatures in M87's accretion flow.
- MAD models produce powerful, wide opening-angle jets which match VLBI observations.
 - But uncertainty about high-magnetization thermodynamics is a big problem.
- M87 Polarization and Sgr A* images are coming soon!

Thank you!

Work with Ramesh Narayan, Michael Johnson, Katie Bouman, Shep Doeleman, Michael Rowan, and the entire EHT collaboration

arXiv: 1803.07088, 1810.01983 EHTC+ 2019, Papers I-VI (ApJL 875) my thesis! <u>https://achael.github.io/</u>pages/pubs