Simulating and Imaging Supermassive Black Hole Accretion Flows

Andrew Chael

May 7, 2019

CENTER FOR ASTROPHYSICS

Event Horizon Telescope

HARVARD & SMITHSONIAN

What does a black hole look like?

The Black Hole Shadow

 \mathbf{X}

Sgr A*: d ≈ 50 µas M87: d ≈ 40 µas

Image credit: Keiichi Asada

The Event Horizon Telescope

Image Credits: HST(Optical), NRAO (VLA), Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm), EHT (1.3 mm)

Outline

Solution Introduction

I. Simulations

- **Two-temperature simulations in KORAL**
- MAD Simulations of M87

II. Imaging

- Regularized Maximum Likelihood
- EHT Images of M87

Part I: Simulating Accretion Flows with Electron Physics

General Relativistic MagnetoHydroDynamics

General Relativistic Ray Tracing

Solves coupled equations of fluid dynamics and magnetic field in a black hole spacetime

Tracks light rays and solves for the emitted radiation

Movie Credits: Aleksander Sądowski, EHT Collaboration 2019 (Paper V)

Simulations: What does the EHT see?

1. Spacetime geometry

-The gravity and shadow of the black hole.

2. Fluid dynamics-How is stuff moving? Jet/disk/outflow?

3. Electron (non)thermodynamics.-Where are the emitting electrons?-What is their distribution function?

M87 and Sgr A* are **Two-Temperature** Flows

• Inefficient Coulomb coupling between ions and electrons.

$$T_{\rm e} \neq T_{\rm i} \neq T_{\rm gas}$$

• Generally expect electrons to be **cooler** than ions.

• But if electrons are **heated** much more, they can remain hotter.

Two-Temperature GRRMHD Simulations

• Using the code KORAL: (Sądowski+ 2013, 2015, 2017)

 Electron and ion energy densities are evolved via the covariant 1st law of thermodynamics:

Electron & Ion Heating

 The total dissipative heating in the simulation is internal energy of the total gas minus the energy of the components evolved adiabatically.

• Sub-grid physics must be used to determine what fraction of the dissipation goes into the electrons.

Sub-grid Heating Prescriptions

Turbulent Dissipation (Howes 2010)

- Non-relativistic physics (Landau Damping)
- Predominantly heats electrons when magnetic pressure is high, and vice versa

Magnetic Reconnection (Rowan+ 2017)

- Based on PIC simulations of trans-relativistic reconnection.
- Always puts more heat into ions
- Constant nonzero δ_e at low magnetization.

Image Credit: Chael+ 2018b see also: Kawazura+ 2018 (turbulent damping). Werner+ 2018 (reconnection)

arXiv:1804.06416

M87 Simulations

Previous work:

Mościbrodzka+ 2016, Ryan+ 2018

- Simulations with weak magnetic flux.
- Ryan 2018+ used a two-temperature method with the turbulent cascade prescription.
- Jet powers relatively weak, jet opening angle is narrow.

Image Credit: Ryan+ 2018, Moscibrodzka+ 2016 Also: Dexter+ 2012,, 2017

M87 Jets at millimeter wavelengths

Turbulent Heating

Heating

Inclination angle (down from pole)

 17°

Disk/Jet rotation sense

Wide apparent opening angles get larger with increasing frequency

Image Credit: Chael+ 2019

 $P_{
m jet~is~too~small!}$ $500~\mu{
m as}$

Reconnection Heating

 $P_{
m jet}$ in the measured range!

43 GHz images – comparison with VLBI Walker+ 2018

Image Credit: Chael+ 2019 VLBA Image Credit: Chael+ 2018a Original VLBA data: Walker+ 2018

M87 Core-Shift

Agreement with measured core shift up to cm wavelengths.

Hada+ 2011

230 GHz Images

Turbulent Heating

- 04° - 68.65

304-1 - 53

Reconnection Heating

230 GHz Images

Turbulent Heating

Image Credit: Chael+ 2019

Outline

introduction

I. Simulations

- **Two-temperature simulations in KORAL**
- MAD Simulations of M87

II. Imaging

- Regularized Maximum Likelihood
- EHT Images of M87

Part II: Imaging a Supermassive Black Hole

Earth Rotation Aperture Synthesis

Movie Credit: Daniel Palumbo

Traditional Approach: CLEAN

"Bayesian" Model Inversion

Image Credit: Katie Bouman Simulation Credit: Avery Broderick

"Bayesian" Model Inversion

Image Credit: Katie Bouman Simulation Credit: Avery Broderick

Regularized Maximum Likelihood

Image Credit: Katie Bouman Simulation Credit: Avery Broderick

Feature-driven Image Regularizers

Sparsity:

Favors the image to be mostly empty space

Smoothness:

Favors an image that varies slowly over small spatial scales

Maximum Entropy:

Favors compatibility with a specified "prior" image

Closure-only imaging

Image Credit: Chael+ 2018a Simulation Credit: Roman Gold

Closure-Only & RML Imaging have wide applicability!

Image Credit: Chael+ 2018a

The eht-imaging software library

achael /	eht-imaging			•	O Unwatch ▾ 💈	203 🖈 Star	4,790 % Fork 431		
<> Code	! Issues 6) Pull requests 12	Projects 0	🗏 Wiki 🔢 Insights	s 🌣 Settings	ŝ			
maging, and Manage topics	alysis, and simu	lation software for	radio interferometry	https://achael.githul	o.io/eht-imagir	ng/	Edit		
T,604 ر	commits	🎾 7 branches	𝒫 6 releases	🛷 1 environmen	t 🚨 9 co	ontributors	മ് GPL-3.0		
Branch: maste	r ▼ New pull re	quest		Creat	e new file Uplo	ad files Find Find	File Clone or download 🗸		
C achael v1	.1.1					□ 1 Latest c	commit 7b8b8d5 17 days ago		
arrays		added requirements.txt				4 months ago			
📄 data		overwrite old master				a year ago			
docs		modified self_cal import					4 months ago		
ehtim		minor bug fix in parloop					17 days ago		
examples	i	fixed obsdata.save_txt in polrep					6 months ago		
		added rowan and howes					6 months ago		
models									
models scripts		added gen	eric scripts gendata.py i	maging.py			3 months ago		

- Python software to image, analyze, and simulate interferometric data
- Flexible framework for developing new tools – e.g. polarimetric imaging, dynamical imaging.
- Used in 18 published papers (including all 5/6 EHT result papers)

https://github.com/achael/eht-imaging

Imaging M87 with the EHT

EXIT

Intuttett

8000.0

0.0006

BHI, July 2018

M87 MJD 57854 227.07 GHz

 $70 \,\mu$ -arcseconds

EHT 2017

Photo Credits: EHT Collaboration 2019 (Paper III) ALMA, Sven Dornbusch, Junhan Kim, Helge Rottmann, David Sanchez, Daniel Michalik, Jonathan Weintroub, William Montgomerie, Tom Folkers, ESO, IRAM

Two stages of imaging M87

Stage 1: Blind Imaging

Stage 2: Parameter Surveys & Synthetic data tests

eht-imaging (37500 Param. Combinations; 1572 in Top Set)

Compact Flux (Jy)	0.4 12%	0.5 19%	0.6 24%	0.7 23%	0.8 22%
Init./MEM FWHM (µas)	40 58%	50 42%	60 0%		
Systematic Error	0% 26%	1% 27%	2% 26%	5% 20%	
Regularizer:	0	1	10	10 ²	10 ³
MEM	0%	0%	8%	92%	0%
TV	31%	35%	33%	0%	0%
TSV	31%	34%	32%	3%	0%
ℓ_1	23%	24%	24%	22%	7%

Image Credit: EHT Collaboration 2019 (Paper IV)

Three pipelines, four days

ReX: Ring Extractor

Animation Credit: Dom Pesce

M87 Ring Properties

- Diameter $d \approx 41 \,\mu as$ is consistent across time and method
- Ring width is resolution dependent, and is at best an upper limit.
- Orientation angle shows tentative $\approx 20^{\circ}$ CCW shift from April 5 11

Image Credit: EHT Collaboration 2019 (Paper V)

Time Variability?

M87

April 5 April 11 50 μ as $6 \,\mathrm{day} = 16 \,t_{\mathrm{g}}$ Simulation

Image Credit: EHT Collaboration 2019 (Paper IV), Chael+ 2019

Weighing a black hole

Image Credit: EHT Collaboration 2019 (Paper VI)

$M = (6.5 \pm 0.7) \times 10^9 M_{\odot}$ $R_{\rm Sch} = 128 \, {\rm AU}$

Outline

Mintroduction

) I. Simulations

- **Two-temperature simulations in KORAL**
- MAD Simulations of M87

🗹 II. Imaging

- Regularized Maximum Likelihood
- EHT Images of M87

The Black Hole in M87: Simulations and Images

EHT 2017 image

Simulated image from GRMHD model

EHT 2017 visibility amplitudes and model amplitudes

Thank You!

<u>Video Credit: Chi-Chi</u> <u>https://www.youtube.com/watch?v=RNZgl4L7I-k</u>