Electron Heating Physics in Images and Variability of Sagittarius A*

Andrew Chael July 2, 2018

arXiv:1804.06416 Work with Michael Rowan, Ramesh Narayan, Michael Johnson, and Lorenzo Sironi

Event Horizon Telescope

Image credits: K.Y. Lo (VLA), UCLA Galactic Center Group (Keck), Gisela Ortiz-Leon, Sara Issaoun (VLBA+LMT 3mm image),

The Event Horizon Telescope

Image credits: Dan Marrone, David Michalik, Atish Kamble, Junhan Kim , Salvaor Sanchez, Helge Rottman , Katie Bouman, MIT

Q.

Two-Temperature Accretion Flows

- Low densities in hot flows → inefficient Coulomb coupling between ions and electrons.
- Generally expect electrons to be cooler than ions since they radiate.
- But if electrons are heated much more, they can remain hotter than ions for long times.

Previous Work has used **fixed** temperature ratios.

Mościbrodzka et al. 2014

 $\lambda = 1.3 \mathrm{mm}$

Fixing electron-to-ion temperature ratios across the same simulation produces quite different 1.3 mm images

Goal: investigate different sources of microscale electron heating in self-consistent two-temperature simulations of Sgr A*.

-Using the code KORAL: (Sądowski et al. 2017) -See also: (Ressler et al. 2017)

Two-Temperature GRRMHD Simulations

- Total fluid quantities are evolved as in single-temperature general relativistic MHD with radiation.
- Electron and ion energy densities are evolved via the 1st law of thermodynamics:

Comparing Sub-grid Heating Prescriptions

Previous work: Turbulent Heating (Howes 2010)

- Based on non-relativistic physics
- Predominantly heats electrons (ions) when magnetic pressure is high (low)

New Model: Magnetic Reconnection (Rowan 2017)

- Based on PIC simulations of transrelativistic reconnection (appropriate for Sgr A*)
- Always puts more heat into ions

Sgr A* Simulations

• Four 3D simulations using KORAL – one for each heating prescription at low (0) and high (0.9375) BH spins.

Model	Spin	Heating	$\dot{M}(\dot{M}_{\rm Edd})$	$\Phi_{\rm BH} \left((\dot{M}c)^{1/2}r_{\rm g} \right)$
H-Lo	0	Turb. Cascade	3×10^{-7}	5
R-Lo	0	Mag. Reconnection	7×10^{-7}	4
H-Hi	0.9375	Turb. Cascade	2×10^{-7}	6
R-Hi	0.9375	Mag. Reconnection	3×10^{-7}	3
· · ·	1	-		

"MAD parameter" ~50 is saturation value for a Magnetically Arrested Disk

• Raytracing scaled to match ~3 Jy at 230 GHz

230 GHz movies

Spin 0 Turbulent Heating

Spin 0.9375 Turbulent Heating

Spin 0 Reconnection Heating

Spin 0.9375 Reconnection Heating

Image structure with wavelength

230 GHz

Where the EHT observes at 230 GHz, both heating prescriptions produce images with distinct black hole shadows

Image structure with wavelength

230 GHz

Where the EHT observes at 230 GHz, both heating prescriptions produce images with distinct black hole shadows

43 GHz

Conventional turbulent heating makes 43 GHz images **anisotropic and jet dominated –** exceeding recent estimates of intrinsic anisotropy (Johnson et al. 2018 in prep.)

230 GHz movies log scale

Spin 0 Turbulent Heating

Spin 0.9375 Turbulent Heating

Spin 0 Reconnection Heating

Spin 0.9375 Reconnection Heating

230 GHz variability

IR and X-ray variability: no large flares

No models reproduce strong IR and X-ray flares → Nonthermal Electrons (for evolving non-thermal distributions, see Chael et al. 2017, arXiv 1704.05092)

Takeaways

- Different plasma heating mechanisms produce qualitatively different images and variability from Sgr A*
 - Turbulent heating prescription \rightarrow disk-jet structure, more variable
 - Reconnection prescription \rightarrow isotropic & steady
- Optically thin emission at 230 GHz means BH shadow should be visible to the EHT regardless of underlying electron heating.
- Of all models considered, high spin + reconnection is most consistent with observations so far
 - But the parameter space is large.
- Many features remain unexplained by two-temperature models.
 - Need nonthermal electrons!

Sgr A* Spectrum & Variability

- Radio: self-absorbed optically thick synchrotron.
- Sub-mm: Peaks and transitions from optically thick → optically thin synchrotron.
 - Variable, RMS ~ 20%
- NIR and X-ray: strongly variable.
 - X-ray flares can exceed 100x quiescence
 - Flares are correlated
 - Measured synchrotron break between IR and X-ray? (Ponti et al. 2017)

Sub-grid Heating Prescriptions

Landau-Damped Cascade (Howes 2010)

- Turbulent cascade of energy to small scales truncated by Landau damping.
- Predominantly heats electrons when magnetic pressure exceeds thermal (low beta).
- Used in all previous work (Sadowski 2016, Ressler 2015, 2017)

Sub-grid Heating Prescriptions Magnetic Reconnection (Rowan 2017)

• Simulations parametrized with magnetization w.r.t. enthalpy density

$$\sigma_{w} = \frac{|B|^{2}}{4\pi w} = \frac{|B|^{2}}{4\pi (n_{i}m_{i}c^{2} + \Gamma_{i}u_{i} + \Gamma_{e}u_{e})}$$
At high temperatures, $\sigma_{w} < \sigma_{i}$

- Always puts more heat into ions
 - $\delta_{
 m e}
 ightarrow 1/2$ at **high** beta for a fixed

Image Anisotropy with wavelength

• Emergence of jet at low frequencies makes Howes models anisotropic

 See Johnson+2018 (in prep) for new measurements of intrinsic size/anisotropy with wavelength

Comparison with EHT 230 GHz measurements

Comparison with EHT 2013 230 GHz measurements

60 degree inclination – no visibility null

10 degree inclination – visibility null from symmetric ring

0.8

1.0

1e10

Johnson+ (2015)

Results: Spectra

Howes models with funnel emission do slightly better at low frequencies

No models reproduce quiescent IR or flaring IR and X-ray → Nonthermal Electrons

Free-free X-ray emission set by density scaling needed to match sub-mm peak.

With fewer hot electrons in funnel, Rowan models have less variability

Results: Spectra – comparison to Ressler+ 2017

With much more magnetization (MAD parameter ~40), Ressler+17 are able to hit/exceed quiescent IR points but do not match the measured spectral index

Video Reconstruction: Using Dynamical Imaging (Johnson+ 2018) and EHT-Satellite Baselines

Movie credit: Daniel Palumbo