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What does a black hole look like?
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What does a black hole look like?
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“It is conceptually interesting, if not astrophysically very important, to calculate the
precise apparent shape of the black hole... Unfortunately, there seems to be no
hope of observing this effect.” (Bardeen 1973,1974)

Image credit:
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Sagittarius A*

Mpy = (4.10 4+ 0.03) x 10°M
D = (8.12 £ 0.03)kpc

Gravity Collaboration, 2018
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Image credits: K.Y. Lo (VLA), UCLA Galactic Center Group (Keck),
Sara Issaoun (GMVA+ALMA 3mm image)
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M87

Image Credits: NRAO (VLA),
Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm)



M8 7

Mpp =~ 6 x 10° Mg (Or3'>< 1027
D ~ 17 Mpc
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Image Credits: NRAO (VLA),
Craig Walker (7mm VLBA), Kazuhiro Hada (VLBA+GBT 3mm)
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The Event Horizon Telescope
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Black Hole Image Reconstruction with the EHT

(i.e. the other half of my work — ask me more later!)

Simulated Image EHT 2017-2018
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First images in early 2019

Image Credit:
Jason Dexter, Katie Bouman



What will the EHT see?

1.) Spacetime geometry
-The shadow of the black hole.

2.) Fluid dynamics
-How is stuff moving? Jet or disk?

3.) Electron (non)thermodynamics.
Where does the light come from?



Sgr A* and M87 are Two-Temperature Accretion Flows

* Low densities in hot flows
- inefficient Coulomb coupling between ions and electrons.

* Generally expect electrons to be cooler than ions.

e But if electrons are heated much more, they can remain hotter than
ions for long times.



From simulations to observables
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GRMHD Simulations
evolve a single fluid and magnetic field

Light Curves
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Previous work used fixed temperature ratios in postprocessing.
(Moscibrodzka et al. 2014)
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Different temperature ratios applied to the same simulation produce quite different images!



Goal: investigate the effects of microscale
electron heating in self-consistent two-
temperature simulations of the EHT
targets Sgr A* and M&7.

-Using the code KORAL: (Sadowski et al. 2017)
-See also previous work by:

Ressler et al. 2017 (Sgr A*)

Ryan et al. 2018 (M87)




Two-Temperature GRRMHD Simulations

 Combined fluid quantities are evolved as in single-temperature general
relativistic MHD with radiation.

* Electron and ion energy densities are evolved via the 15 law of
thermodynamics:

Adiabatic compression/expansion
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Viscous dissipation

* KORAL uses self-consistent entropies/adiabatic indices that transition from
5/3 to 4/3 as the species become relativistic.



Sub-grid Heating Prescriptions

|dentify total dissipation numerically
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Sub-grid Heating Prescriptions

Landau-Damped Turbulent Cascade

(Howes 2010)

Based on non-relativistic physics

Predominantly heats electrons (ions)
when magnetic pressure is high (low)
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Magnetic Reconnection

(Rowan 2017)
Based on PIC simulations of trans-
relativistic reconnection (appropriate for
Sgr A* & M87)

* Always puts more heat into ions
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Sgr A*

(Chael+ 20183, arXiv: 1804.06416)



Previous work: Ressler et al. 2017

* A 3D, two-temperature simulation with relatively high magnetic flux and
using the turbulent cascade prescription.

* Recovers a disk-jet structure.
* Is this structure dependent on electron heating & B field strength?

30 GHz 230 GHz

Image credit: Ressler et al. 2017



Our Sgr A* Simulations

* Four 3D simulations using KORAL
— one for each heating prescription at low (0) and high (0.9375) BH spins.

Model || Spin Heating M(Mgaq) PBH ((]Vfc)l/2rg)
H-Lo 0 Turb. Cascade 3x 107" 5
R-Lo 0 Mag. Reconnection 7 x 1077 4
H-Hi 0.9375  Turb. Cascade 2x 1077 6
R-Hi 0.9375 Mag. Reconnection 3 x 10=7 3

|_'_l

Very low “MAD parameter”
~50 is saturation value for a
Magnetically Arrested Disk

* Density is scaled to match ~3 Jy at 230 GHz



Sgr A*: Temperature ratio
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1.3 mm movies
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Image structure with frequency

230 GHz

Spin 0 Spin 0.9375 Spin 0 Spin 0.9375
Turbulent Heating Turbulent Heating Reconnection Heating  Reconnection Heating

Where the EHT observes at
230 GHz, both heating
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prescriptions produce images
with distinct black hole
shadows




Image structure with frequency

230 GHz

Spin 0 Spin 0.9375 Spin 0 Spin 0.9375
Turbulent Heating Turbulent Heating Reconnection Heating  Reconnection Heating

Where the EHT observes at
230 GHz, both heating
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with distinct black hole
shadows
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43 GHz

Spin 0 Spin 0.9375 Spin 0 Spin 0.9375
Turbulent Heating Turbulet Heating Reconnection Heating  Reconnection Heating
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Turbulent heating makes 43 GHz
images anisotropic and jet
dominated —

exceeding estimates of intrinsic N
anisotropy ’
(Johnson et al. 2018,

Issaoun et al. 2018 in prep)




First Intrinsic Image of Sgr A* at 3.5 mm
and the first VLBl with ALMA (Issaoun et al. in prep)
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New constraints on Sgr A* asymmetry at 3.5 mm rule out edge-on jet!
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IR and X-ray variability: no flares
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No models reproduce strong IR and X-ray flares = Nonthermal Electrons



Evolving nonthermal electrons in simulations
(Chael et al. 2017, arXiv 1704.05092)

o New method to self-consistently evolve non-thermal spectra in parallel with two-temperature fluid.
¢ First 3D simulations with realistic electron acceleration coming soon!

Spatial distribution of nonthermal spectral break energy

Time-
averaged

Snapshot




M&7

(Chael+ 2018b, arXiv: 1810.01983)



Previous work: Ryan et al. 2018

* 2D, two-temperature simulations with weak magnetic flux and using the
turbulent cascade prescription at 2 BH masses.

* Good agreement with previous EHT measurements of image size for high
mass case (6 x 10°Mg).

 Jet power too weak, jet angle too narrow

M6a09
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Image credit: Ryan et al. 2018



Our M87 Simulations

Model Spin Heating (M/MEdd) (CIDBH/(Mc)l/QTg) <PJ(100)) lerg s 1]
H10 0.9375  Turb. Cascade 3.5 x107% 54 6.6 x 10*
R17 0.9375 Mag. Reconnection | 2.3 x 10~ 63 1.2 x 1043

 Both simulations are in the MAD state.
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“MAD parameter”

* Density Is scaled to match ~ 1 Jy at 230 GHz.

Jet mechanical power

* The mechanical jet power in R17 is in the measured range of 1043 -10%* erg/s.



Electron Heating =2 jet dynamics
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Turbulent heating produces too much radiation at the jet
base, which saps the jet power.



M8/ Spectra
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Density floors are imposed in
the simulation inner jet where
aJ; Z 100

We don't trust radiation from
these regions, so when
raytracing we only include
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gj § 29

Spectra and images at
frequencies > 230 GHz
depend strongly on the
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Data from Prieto+16
New points (cyan and magenta) from Akiyama+15, Doeleman+12, Walker+18, Kim+18, and MOJAVE



M87 Jets at millimeter wavelengths

Inclination angle
(down from pole)
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Wide apparent opening angles get larger with increasing frequency



43 GHz jets
0.0 yr
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43 GHz images — comparison with VLBA
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Image credit: Walker+ 2018



M&87 Core Shift
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Good agreement with measured core shift down to cm wavelengths



What will M87 look like to the EHT at 230 GHz?
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What will M87 look like to the EHT at 230 GHz?
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What will M87 look like to the EHT at 230 GHz?
0.0 yr
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Current 230 GHz images are too big!
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Changing the inclination or including more emission from magnetized regions near axis makes
the emission more compact.
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== First EHT images on the way!
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Takeaways

Different plasma heating mechanisms produce qualitatively different images.

For Sgr A*:
* Turbulent heating produces a disk-jet structure, which is too anisotropic
(when viewed-edge on.)

For M87:
* MAD models produce powerful jets which match VLBI observations.
e But turbulent heating produces too much radiation at the jet base.

Many features remain unexplained by two-temperature models.
* Nonthermal electrons.

EHT images early next year!



hank You!



