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Imaging a Black Hole with the EHT

Ls

.. 4 ona
Hawaii 8
* \ v

*
Mexico

Left Image Credit: NRAO ( Top Left), Hada et al. 2016
(Bottom Left), Avery Broderick & Kazu Akiyama (Right)
Right Image Credit: Michael Johnson. APEX, IRAM, G.

Narayanan, J. McMahon, JCMT/JAC, S. Hostler, D. Harvey,
ESO/C. Malin




ing for EHT 2017

Imag

Other work

EHT 201/

4

Chael et al. 2016

(arXiv 1704.05092)

o
£
o)
®
£
LA
-
()
-
©c QO
ea
O =
g ©
S 5
n o
> 2
£3
O C
T =
(=)
ES
m &
— =
> c

YVEEN

r11.43

ser//Apw

o

14
r0.86

2017

Smooth Model

Simulation Credit: Avery Broderick (Top)

Jason Dexter (Bottom)

\\\\\\\\— | /N N\

- o S \ —
- l.o/
-—\
—N

———

Top Image Credit: Kazu Akiyama



GRMHD Simulations as models for EHT
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GRMHD Simulations model EHT sources -
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GRMHD Simulations

* Collisions bring the plasma as a single ideal fluid in local
thermodynamic equilibrium.

* |deal MHD: high conductivity cancels electric field in the rest
frame — Lorentz force on a particle vanishes.

E4+vxB=0



ADAFs

 Advection Dominated Accretion Flow.

* Most viscous energy Is advected to smaller radii instead of
being radiated.

* Flows are:
* Hot
e Low luminosity
* Low accretion rate
 Optically thin
« Geometrically thick



Two-Temperature Simulations

* Low densities in hot flows = inefficient Coulomb coupling
between ions and electrons.

* Generally expect ions to be hotter than electrons:
« Electrons lose energy through radiation much more efficiently than ions.

o Relativistic electrons store more energy with a smaller increase in
temperature than non-relativistic ions.

nkgT = (I' = 1)u



Two-Temperature Simulations

Ressler et al. 2015 (arXiv 1509.04717)
2017 (arXiv 1611.09365)
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ABSTRACT
We calculate the radiative properties of Sagittarius A* — spectral energy distribution, variabil-
ity, and radio-infrared images — using the first 3D, physically motivated black hole accretion

explored in future work. models that directly evolve the electron thermodynamics in general relativistic MHD simu-
; - lations. These models reproduce the coupled disc-jet structure for the emission favored by
Key words: MHD — general relativit previous phenomenological analytic and numerical works. More specifically, we find that the

low frequency radio emission is dominated by emission from a polar outflow while the emis-

sion above 100 GHz is dominated by the inner region of the accretion disc. The latter produces

time variable near infrared (NIR) and X-ray emission, with frequent flaring events (including
IR flares without corresponding X-ray flares and IR flares with weak X-ray flares). The photon
ing i rly visible at 230 GHz and 2 microns, which is encouraging for future horizon-scale

. so show that anisotropic electron thermal conduction along magn field

lines has a negligible effect on the radiative properties of our model. We conclude by noting

limitations of our current generation of first-principles models, particularly that the outflow is
closer to adiabatic than isothermal and thus underpredicts the low frequency radio emission.
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ABSTRACT

We present a numerical method which evolves a two-temperature, magnetized, radia-
tive, accretion flow around a black hole, within the framework of general relativistic radiation
magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-
components — ions and electrons — which share the same dynamics but experience indepen-
dent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated
independently according to a prescription from the literature for magnetohydrodynamical tur-
bulent dissipation. Energy exchange between the particle species via Coulomb collisions is
included. In addition, electrons gain and lose energy and momentum by absorbing and emit-
ting synchrotron and bremsstrahlung radiation, and through Compton scattering. All evolu-
tion equations are handled within a fully covariant framework in the relativistic fixed-metric
spacetime of the black hole. Numerical results are presented for five models of low luminosity
black hole accretion. In the case of a model with a mass accretion rate M ~ 4 3 1078 My, we
find that radiation has a negligible effect on either the dynamics or the thermodynamics of the
acereting gas. In contrast, a model with a larger M ~ 4 x 10~ Mgyy behaves very differently.
The accreting gas is much cooler and the flow is geometrically less thick, though not quite
a thin accretion disk.

Key words: accretion, accretion discs — black hole physics — relativistic processes — methods:
numerical




Two-Temperature Simulations

* Low densities in hot flows = inefficient Coulomb coupling
between ions and electrons.

* Generally expect ions to be hotter than electrons:
« Electrons lose energy through radiation much more efficiently than ions.

o Relativistic electrons store more energy with a smaller increase in
temperature than non-relativistic ions.

nkgT = (I' = 1)u

* But the heating prescription can make a big difference.
o Howes (2010) puts almost all energy into electrons in high magnetization
regions



Two-Temperature Simulations

* Low densities in hot flows = inefficient Coulomb coupling
between ions and electrons.

* Generally expect ions to be hotter than electrons:
« Electrons lose energy through radiation much more efficiently than ions.

o Relativistic electrons store more energy with a smaller increase in

temperature than non-relativistic ions. :
Adjust from 5/3 -> 4/3

nkgT = (I' — 1)u self consistently with T

* But the heating prescription can make a big difference.
o Howes (2010) puts almost all energy into electrons in high magnetization
regions



Two-Temperature GRRMHD Simulations

 Total fluid quantities are evolved as in single-temperature GRRMHD

« Electron and ion energy densities are evolved via the 15t law of
thermodynamics:

Te(neseu )., = 6eq" + ¢¢ + G°

T;(isiut).,, = (1 —6e)q" — qc
entropy per partlcle/ dissipative processes



Two-Temperature ADAF simulation (Sadowski et al. 16)
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Sgr A* SED: Nonthermal Electrons are important!
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Nonthermal distributions contribute to Sgr A*
variability!
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Goals:

1. Self-consistently evolve a spectrum n(~) of nonthermal
electrons in global GRRMHD simulations including interactions
with all other quantities (thermal gas, radiation, magnetic field . . .)

2. Include the resulting nonthermal population in radiative
transfer to produce images & spectra.

3. Compare to data and constrain the bulk properties and
microphysics of the accretion flow.



Non-Thermal Population: Assumptions

* Track the spectrum n(~y) sampled in different “bins” in Lorentz factor
space.

* We assume the non-thermal distribution is isotropic in the fluid
frame.

* We also assume the non-thermal population is highly relativistic and
optically thin (neglect absorption).



Evolution Equation

Advection



Evolution Equation
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Evolution Equation

Radiative Cooling
A

| |
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Evolution Equation

Radiative Cooling
A
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Evolution Equation

Radiative Cooling
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Evolution Equation

Inn(y)

| ”)/ n(’y) = Flux in Lorentz factor space
| |

Fn(v)y : |

-
| :
| | * I * I
LT e
- ! ! : In~

Solved with implicit upwind finite differencing.
Maybe spectral method in future?



Radiative Cooling
* Synchrotron:
Ysyn ~ 3272

* Free-Free:

Y~ —niy logy
* Inverse Compton:

Y1 ~ —Er 2 Fren ()



Synchrotron Cooling + Particle Injection
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. Constant background B-field
and particle injection
spectrum.

Vsyn ~ B272

« Synchrotron cooling break
between injection index p
and p+1 propagates to lower
Lorentz factor:

. Below minimum injection
Lorentz factor, spectrum has
universal power law of -2



Test: Inverse Compton Cooling (with Klein-Nishina)

101[) N

Based on result from Manolakou
et al 2007

30,000 K photon background
modifies IC cooling.

YiC ~ —Er W/QFKN(’Y)

kT )‘W

Frn(vy) = (1 + 11.27

At the highest Lorentz factors,
Synchrotron dominates, and the
spectrum is broken.

At the lowest Lorentz factors, the
KN correction is unimportant and
the IC break develops normally.



Viscous Heating & Injection

* We compare the internal energy of the total fluid to the internal
energy of the components evolved adiabatically.

* A fraction 0. goes directly into both electron populations:§ ., of
that goes into non-thermal electrons.

* We must also specify an injection power law index and minimum
Lorentz factor

* What physics determines the heating/injection rate? MHD
turbulence, shocks, reconnection....
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Sgr A* Simulation

Initial conditions: evolved two-
temperature disk with no nonthermal
electrons.

Constant 1.5% nonthermal energy
injection fraction

Constant p=3.5 power law.
Fixed injection minimum and

maximum — chosen to be above
hottest thermal peak.
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Magnetic Field and Electron Temperature
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Thermal vs Nonthermal Radiation Power
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Comparison to simulation without
nonthermal electrons
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Timescales and Cooling Break

20

* Cooling time: time for entire
injected spectrum to break
assuming constant injection.

10
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Spectral breaks trace shocks?

Synchrotron break

Gas Expansion
\ / .




Spectral breaks trace shocks?

Synchrotron break

Gas Expansion
\ / .

x=1rg

arb units




Raytraced Images

230 GHz 136 THz infrared 2 keV X-ray

Thermal
Only




Raytraced Images

230 GHz 136 THz infrared 2 keV X-ray

Thermal
Only
- n

Nonthermal



Synchrotron Spectra
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vL, (erg s7h)

Nonthermal effects on Sgr A* variability
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Takeaway Points

Flows around Sgr A* and M87 should be 2 temperature and have an additional
non-thermal electron population.

We now have a method to simulate the evolution of non-thermal electron
distributions in global GRMHD simulations.

The electron heating/injection prescription is still very uncertain.



Next Steps

Investigate different injection prescriptions to better capture physics of

injection and reproduce variability.
o In progress: dissipation fraction based on PIC simulations of reconnection (instead
of Landau damping)
o spectral changes in flares: varying injection slopes, varying minimum Lorentz
factor.
« To reproduce flaring activity: Localized nonthermal injection



Next Steps

Investigate different injection prescriptions to better capture physics of

injection and reproduce variability.
o In progress: dissipation fraction based on PIC simulations of reconnection (instead
of Landau damping)
o spectral changes in flares: varying injection slopes, varying minimum Lorentz
factor.
« To reproduce flaring activity: Localized nonthermal injection

Full 3D simulations & polarized radiative transfer

Investigate different accretion regimes — where IC / free-free / feedback
Important.



Questions?



What about absorption?

« For v >> 1, to 2" order in hv/mc?, the evolution equation is:

(5) =3 im0+ = [Pcg (52)

« Where:
Emission: 15t order

Absorption: 2" order

,.Y:_/em)dm (h_)
me? mc? Requires radiation

2 spectrum and emissivity
O(f)/) — / II/ E(V: 7) dv (ﬂ) / spectrum!




Thermal and Nonthermal Power
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